
The confessional essay is not a popular genre 
in mathematics and the sciences; few of us 
wish to dwell on our mistakes or call atten-

tion to them. An inspiring exception is Donald E. 
Knuth of Stanford University. During a decade’s 
labor on the TEX typesetting system, he kept a 
meticulous log of all his errors, and then he pub-
lished the list with a detailed commentary.

I have long admired Knuth’s act of public 
bravery, and this column is my attempt to follow 
his example. I took courage from the thought that 
if there is any realm of life in which I might hope 
to surpass Don Knuth, it’s in making mistakes; 
but, alas, I’ve fallen short even in this dubious 
department. Knuth’s published error log runs to 
more than 900 entries, whereas here I am going 
to confess to only a paltry handful of mistakes. 
Then again, Knuth needed 10 years’ work on a 
major software project to accumulate his budget 
of errors, but I was able to commit some really 
serious howlers in a program of a dozen lines.

Knuth remarks that keeping an error log not 
only helped in debugging the program but also 
“helped me to get to know myself.” I would 
like to think that I too have acquired some self-
knowledge from the experience of confronting 
my own fallibility. And it would be gratifying to 
suggest that by telling my story I might save oth-
ers from making the same mistakes—but I don’t 
quite believe that, and I’m not even sure it would 
be a good idea.

Start Spreading the News
The story begins with a loose end from my col-
umn on the Lambert W function in the March–
April issue of American Scientist. I had been look-
ing for a paper with the curious title “Rumours 
with general initial conditions,” by Selma Belen 
and C. E. M. Pearce of the University of Ade-
laide, published in The ANZIAM Journal, which 
is also known as The Australia and New Zealand 
Industrial and Applied Mathematics Journal. By the 
time I found the paper, my column had already 
gone to press. This was a disappointment, be-
cause Belen and Pearce describe an illuminating 

application of the W function in a context that I 
found interesting in its own right. Here is how 
they begin:

The stochastic theory of rumours, with 
interacting subpopulations of ignorants, 
spreaders and stiflers, began with the sem-
inal paper of Daley and Kendall. The most 
striking result in the area—that if there is 
one spreader initially, then the proportion 
of the population never to hear the rumour 
converges almost surely to a proportion 
0.203188 of the population size as the latter 
tends to infinity—was first signalled in that 
article. This result occurs also in the variant 
stochastic model of Maki and Thompson, 
although a typographic error has resulted 
in the value 0.238 being cited in a number of 
consequent papers.

I was intrigued and a little puzzled to learn 
that a rumor would die out while “almost sure-
ly” leaving a fifth of the people untouched. Why 
wouldn’t it reach everyone eventually? And that 
number 0.203188, with its formidable six decimal 
places of precision—where did that come from?

I read on far enough to get the details of the 
models. The premise, I discovered, is that rumor-
mongering is fun only if you know the rumor 
and your audience doesn’t; there’s no thrill in 
passing on stale news. In terms of the three sub-
populations, people remain spreaders of a rumor 
as long as they continue to meet ignorants who 
are eager to receive it; after that, the spreaders 
become stiflers, who still know the rumor but 
have lost interest in propagating it.

The Daley-Kendall and Maki-Thompson models 
simplify and formalize this social process. Both 
models assume a thoroughly mixed population, 
so that people encounter each other at random, 
with uniform probability. Another simplifying 
assumption is that people always meet two-by-
two, never in larger groups. The pairwise inter-
actions are governed by a rigid set of rules: 

• Whenever a spreader meets an ignorant, the  
ignorant becomes a spreader, while the original 
spreader continues spreading.

• When a spreader meets a stifler, the spreader 
becomes a stifler.
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• In the case where two spreaders meet, the 
models differ. In the Daley-Kendall version, both 
spreaders become stiflers. The Maki-Thompson 
rules convert only one spreader into a stifler; the 
other continues spreading.

• All other interactions (ignorant-ignorant, 
ignorant-stifler, stifler-stifler) have no effect on 
either party.

The rules begin to explain why rumors are self-
limiting in these models. Initially, spreaders are 
recruited from the large reservoir of ignorants, 
and the rumor ripples through part of the popu-
lation. But as the spreaders proliferate, they start 
running into one another and thereby become 
stiflers. Because the progression from ignorant 
to spreader to stifler is irreversible, it’s clear the 
rumor must eventually die out, as all spreaders 
wind up as stiflers in the end. What’s not so ob-
vious is why the last spreader should disappear 
before the supply of ignorants is exhausted, or 
why the permanently clueless fraction is equal to 
0.203188 of the original population.

The rumor models are closely related to well-
known models of epidemic disease, where the 
three subpopulations are usually labeled suscep-
tibles, infectives and removed cases. But there’s  
a difference between rumors and epidemics. In 
the rumor models, it’s not only the disease that’s 
contagious but also the cure, since both spread-
ing and stifling are communicable traits.

The Rumor Mill
I was curious to see the rumor models in action, 
and so I wrote a little program. I set up a popula-
tion of 1,000 individuals, each of whom could 
be an ignorant, a spreader or a stifler. Initially 
there was just one spreader and all the rest were 

ignorants. At the heart of the program was the 
following procedure, meant to implement the 
Daley-Kendall model (the one in which pairs of 
spreaders annihilate each other):

repeat
choose X at random from among the 

spreaders in the population;
choose Y at random from the entire 

population;
if Y is an ignorant
 then make Y a spreader
else if Y is a spreader
 then make both X and Y stiflers
else if Y is a stifler
 then make X a stifler

until there are no more spreaders

When all the spreaders are gone, nothing more 
can change, so the program ends and reports 
the fraction of the population still oblivious of 
the rumor. This fraction, designated θ, should 
be 0.203188. But the result from my program, 
averaged over a few thousand runs, was 0.28 or 
0.29—a considerable discrepancy.

At this point, let me pause to say that my big 
boo-boo had already been committed. Before 
reading on, you might want to try debugging my 
algorithm, or even write a program of your own.

Typos and Thinkos
Computer programming teaches humility, or at 
least that’s my experience. In principle, the dis-
crepancy I observed might have pointed to an 
error in the published result, but that wasn’t my 
first hypothesis. I checked my own code, fully 
expecting to find some careless mistake—running 
through a loop one time too few or too many, fail-

Figure 1. The birth and death of a rumor are traced in a diagram where time proceeds from left to right and each horizontal ribbon represents 
one member of a population. Colors encode a person’s status: blue for ignorants, who have not heard the rumor; red for spreaders of the rumor; 
purple for stiflers, who know the rumor but have lost interest in it. Each white vertical link indicates an encounter between two randomly select-
ed individuals. Spreaders communicate the rumor to ignorants, turning them into spreaders; when two spreaders meet, both become stiflers; a 
spreader who meets a stifler also becomes a stifler. The process begins with a single spreader in a sea of ignorants. More spreaders are recruited, 
but by the end they have all become stiflers. Meanwhile, 7 of the 30 individuals pass through the entire simulation without ever hearing the 
rumor. (This diagram and the rest of the illustrations were generated by a program that does not suffer from the error discussed in the text.)
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ing to update a variable, miscalculating an array 
index. Nothing leapt out at me. The problem, I 
began to suspect, was not a typo but a thinko.

I did know of one soft spot in the program. 
The individuals X and Y were chosen in such 
a way that they could both turn out to be the 
same person, suggesting the strange spectacle 
of spreading a rumor to oneself. (“Pssst. Have 
I heard about...?”) When I went to fix this odd-
ity, I discovered another bug. A variable named 
spreader-count was incremented or decremented 
on each passage through the loop, according to 
the outcome of the encounter; when this vari-
able reached zero, the program ended. After 
each spreader-spreader interaction, I decreased 
spreader-count by 2—with potentially disastrous 
results if X and Y were identical. This was a seri-
ous flaw, which needed to be repaired; however, 
the change had no discernible effect on the value 
of θ, which remained stuck at 0.285.

I had another thought. Belen and Pearce were 
careful to state that their result holds only when 
the population size tends to infinity. Perhaps my 
discrepancy would go away in a larger sample. I 
tried a range of populations, with these results:

 population     θ
 10 0.354
 100 0.296
 1,000 0.286
 10,000 0.285
 100,000 0.285

The trend was in the right direction—a smaller 
proportion of residual ignorants as population 
increased—but the curve seemed to flatten out 
beyond 1,000, and θ looked unlikely ever to 
reach 0.203. Even so, it seemed worthwhile to 
test still larger populations, but for that I would 
need a faster program. I wrote a new and simpler 
version, dispensing with the array of individu-
als and merely keeping track of the number of 
persons in each of the three categories. With this 
strategy I was able to test populations up to 100 
million. The value of θ remained steady at 0.285.

Looking at the distribution of θ values from 
single runs of the program (rather than averages 
over many runs) suggested another idea. Most 
of the results were clustered between θ=0.25 and 
θ=0.35, but there were a few outliers—runs in 
which 99 percent of the population never heard 
the rumor. I could see what must be going on. 
Suppose on the very first interaction X spreads 
the rumor to Y, and then in the second round the 
random selection happens to settle on X and Y 
again. The rumor dies in infancy, having reached 
only two people. Could it be that excluding these 
outliers would bring the average value of θ down 
to 0.203? I gave it a try; the answer was no.

Mea Culpa
I was stumped. I had reached the point in a de-
bugging session where you begin to doubt your 
random-number generator, or even your com-

piler. As it happens, Knuth found a few compiler 
bugs during his work on TEX, but for me that 
road has always led nowhere.

For lack of a better idea, I decided to look at the 
other scheme of rumor propagation, the Maki-
Thompson model. As indicated above, this mod-
el differs from the Daley-Kendall one in that an 
encounter between two spreaders converts just 
one of them into a stifler. Modifying my program 
took only a second. When I ran it, the answer 
came back θ=0.203. Now I was not just stumped 
but also thoroughly confused.

Here’s where confession becomes a test of 
character. There was a moment—it came in the 
dark of the night—when I allowed myself to 
entertain the notion that maybe I was right after 
all, and the rest of the world had a screw loose. 
I looked back at the opening paragraph of the 
paper by Belen and Pearce. I realized that I could 
make sense of it all, and reconcile their numbers 
with mine, merely by assuming that the Austra-
lian authors had everything umop-episdn. The 
number 0.203, which they identified as the re-
sult of the Daley-Kendall model, really belonged 
with Maki-Thompson. As for 0.238, which they 
called a typographical error—well, yes, that’s 
just what it was, a transposition of 0.283, which 
seemed close enough to 0.285, the value of θ  I 
calculated for Daley-Kendall....

By morning this madness had abated, but the 
impasse remained. I knew I could probably settle 
the matter by going back to the library and look-
ing up the sources cited by Belen and Pearce, 
but that seemed less than sporting. I could have 
tried to prove the correctness of one result or the 
other, but if I can’t trust myself to write a correct 
program, how can I be trusted to write a correct 
proof? Then there’s the experimental method: I 
might have assembled a thousand volunteers, 
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Figure 2. The dynamics of rumors are revealed by averaging the re-
sults of 100,000 runs of a model with a population of 100. Spreaders 
reach a peak and then die out entirely, so that the final population is 
divided between stiflers and ignorants. A fundamental prediction of 
the model is that the residual proportion of ignorants is about 0.203.
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carefully instructed them on the Daley-Kendall 
rules, and set a rumor loose in their midst.

In the end, what I tried was yet another com-
puter simulation. I decided to write a program 
that would mimic a real experiment as closely as 
possible, reproducing all the basic events of the 
underlying model with no shortcuts or optimi-
zations. The image I had in mind was a crowd 
of people milling about like molecules in a gas, 
bumping into each other at random and passing 
on rumors during these chance collisions. This 
was the system I wanted to simulate.

My first program, with its explicit represen-
tation of each member of the population, was 
already fairly close to the goal. But I had made 
one refinement for the sake of computational ef-
ficiency. Because interactions in which neither 
party is a spreader could never affect the fate of 
a rumor, it seemed wasteful to include them; I 
avoided that waste by always choosing a spreader 
as the first party to an encounter. This seemed 
a totally harmless bit of streamlining, but now I 
went back and removed it. In the third version of 
the program, I selected two individuals at random 
from the entire population, checked to make sure 
they were not actually the same person, and then 
allowed them to interact according to the Daley-
Kendall rules. It seemed a futile exercise, which 
would surely yield exactly the same result as the 
other programs, only slower. To my astonishment, 
the new program reported θ=0.203.

My Bad
If you have already figured out where my rea-
soning went astray, I offer my congratulations. 
My own belated enlightenment came when I 
finally drew the matrix of all nine possible en-
counters of ignorants, spreaders and stiflers. As 

shown in Figure 4, this diagram can serve as 
more than just an enumeration of possible out-
comes; it encodes the entire structure and opera-
tion of the model. If we make the widths of the 
columns and rows proportional to the sizes of 
the three subpopulations, then the area of each 
of the nine boxes gives the probability of the cor-
responding two-person encounter. Choosing two 
participants at random is equivalent to choosing 
a point at random within the diagram; the out-
come of the interaction is then decided by which 
of the nine boxes the chosen point lies within. (I 
am again glossing over the issue of spreading a 
rumor to oneself; it’s a minor correction.)

To understand where I went wrong, it’s 
enough to analyze the simplest case, where the 
three subpopulations are of equal size and all 
nine kinds of encounters have the same probabil-
ity, namely 1⁄9. The boxes at the four corners of 
the diagram correspond to events that do not in-
volve a spreader and that change no one’s status. 
Two other boxes describe ignorant-spreader en-
counters, which therefore have a total probability 
of 2⁄9. Two more boxes correspond to spreader-
stifler meetings, so those events also occur with 
probability 2⁄9. But there is only one box repre-
senting spreader-spreader interactions, which 
accordingly must be assigned a probability of 
1⁄9. The key point is that ignorant-spreader and 
spreader-stifler events are each twice as likely as 
spreader-spreader meetings.

Now consider what happens in my first pro-
gram for the Daley-Kendall model. By always 
choosing a spreader first, I confined all events to 
the middle row of the matrix, and the three boxes 
in this row were selected with equal probability. 
As a result, spreader-spreader interactions were 
twice as frequent as they should have been, and 
the rumor was extinguished prematurely.

From the point of view of probability theory, 
the error is an elementary one of failing to count 
cases properly. Perhaps a professional program-
mer would cite a different root cause: I had vio-
lated the old adage, “Don’t start optimizing your 
program until you’ve finished writing it.”

Back to the Stacks
Not all of my confusion was cleared up by the 
discovery of this error. In particular, the algorithm 
that I now knew to be incorrect for the Daley-
Kendall model still seemed to give the right an-
swer for the Maki-Thompson rules. To make sense 
of this situation, I finally went back to the library 
to find out what the original authors had said.

Daley and Kendall are Daryl J. Daley, now of 
the Australian National University, and David G. 
Kendall, a distinguished statistician and probabi-
list at the University of Cambridge. Their paper, 
published in 1965, is a model of lucid exposition, 
which would have spared me all my stumbling 
in the dark—and for that reason I’m glad I didn’t 
see it sooner. The correct calculation of probabili-
ties is stated very clearly (there’s a factor of 1⁄2 in 
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Figure 3. The longevity of a rumor and its success in permeating the 
population are not strongly correlated. Each dot represents a single run 
of the rumor program, showing both how long the rumor survived and 
how many people remained ignorant of it at the end. The distribution 
of ignorants is about the same whether the rumor dies after 500 en-
counters or lasts for more than 1,000. But in the upper lefthand corner 
are a few exceptional cases (colored orange for emphasis) of rumors 
that died in infancy and reached very few people.



2005    May–June     211www.americanscientist.org

the expression for the spreader-spreader interac-
tion). Furthermore, the origin of the mysteriously 
precise number 0.203188 is made plain. Those six 
digits come not from a discrete-event simulation 
like the ones I had designed but from a continu-
ous, differential-equation version of the model. 
The number θ  is a solution of the equation:

θe2(1–θ) = 1.

(This equation brings us back almost to the Lam-
bert W function, WeW.)

Maki and Thompson are Daniel P. Maki and 
Maynard Thompson of Indiana University, who 
discussed rumors in a 1973 textbook, Mathemati-
cal Models and Applications. They described the 
rumor-passing process in terms of telephone 
calls, and they limited their attention to calls 
placed by spreaders; because of this asymmetry, 
only the middle row of the matrix in Figure 4 
enters into the calculation, and my first program 
was in fact a correct implementation of their 
model. (At least I got something right.) It is almost 
a coincidence that Maki and Thompson arrive at 
the same value of θ  as Daley and Kendall: Their 
spreader-spreader interactions are twice as likely 
but have only half the effect.

The paper by Belen and Pearce that launched 
me on this adventure also deserves a further 
comment. The phrase “general initial conditions” 
in their title refers to rumors initiated not by a 
single spreader but by many. One might guess 
that with enough spreaders, the rumor must 
surely permeate the entire society, but Belen and 
Pearce show otherwise. Measuring the fraction 
of those originally ignorant who remain ignorant 
when the rumor has finished, they find that this 
fraction actually increases along with the num-
ber of initial spreaders, tending to a maximum of 
1⁄e, or about 0.368. In other words, as more people 
spread the news, more people fail to hear it. The 
reason is simply that the multitude of spreaders 
quickly stifle one another.

By now the mathematics of rumors has ac-
quired a vast literature. Variant models track 
competing rumors and counter-rumors or allow 
people to meet more than two at a time. Still more 
models study the progress of rumors through net-
works or lattices rather than structureless mixed 
populations. I have not yet had a chance to make 
any errors in exploring these systems.

Gnothi Seauton
Mistakes bring the gift of self-knowledge—a gift 
that is not always welcome. Looking back on this 
episode, I could summarize it as follows: I wrote 
a program that gave a wrong answer, and then I 
fiddled and fudged until I finally got the output 
I wanted, and then I stopped. This is not a pro-
tocol to be recommended. What’s most troubling 
is the uncomfortable thought that if the textbook 
answer had not been given to me at the outset, I 
would surely have been content with the result 
of my first, fallacious, program.

Still, for most of us, the only way we’ll never 
err is if we never try. My fellow-columnist Henry 
Petroski has written eloquently about the neces-
sary role of error and failure in all worthy under-
takings; as he says, falling down is part of grow-
ing up. And if we are going to make mistakes, 
it seems salutary to bring them out in the open 
and discuss their causes. Staring them in the face 
makes them seem a little less mortifying.

Only a little, though. A confession of this kind 
is not followed by absolution. And instead of 
“Go and err no more,” Knuth quotes Piet Hein’s 
advice: “Err and err and err again but less and 
less and less.” I take my own motto from the 
novelist and playwright Samuel Beckett: “Fail 
again. Fail better.”
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Figure 4. Matrix of all possible events in the rumor model can also be 
taken to define the probabilities of those events. If the width of each 
row and column is made proportional to the number of members in 
the corresponding subpopulation (ignorants, spreaders and stiflers), 
then choosing two individuals at random is equivalent to choosing a 
point at random within the matrix; which of the nine boxes the point 
lies within determines what happens next. The three assignment state-
ments within each box (the left arrow is usually read as “gets” or “be-
comes”) indicate changes in the size of each subpopulation. Note that 
two of the nine boxes represent ignorant-spreader interactions, and two 
more designate spreader-stifler encounters, but there is only one box 
for  spreader-spreader meetings.


