
Let me take you back to 1969, the year of
Woodstock and of Neil Armstrong’s giant
leap for mankind. Nixon was in the White

House that year, Elvis was playing Vegas, and
the Beatles were recording Abbey Road. Bill Gates
and Steve Jobs were high school kids. Such a
long time ago it was—half a lifetime. In the
world of computer technology, 1969 is halfway
back to the dawn of time.

And yet, when you look closely at the latest
computer hardware and software, it’s not hard to
find vestiges of 1969. Your shiny new Pentium
processor can trace its heritage back to a chip
whose design was begun that very year. The
Unix operating system, whose offshoots are
blooming luxuriantly these days, also has its
roots in that flower-power summer. And the first
four nodes of the ARPANET, progenitor of to-
day’s Internet, began exchanging packets in the
last months of 1969. The window-and-menu in-
terface we know so well was still a few years in
the future; but, on the other hand, the computer
mouse was already a few years old. 

One reaction to the longevity of so much early
computer technology is admiration for the pio-
neers of the field. They must have been clear-
thinking and far-seeing innovators to get so much
right on the first try. And it’s true: Giants strode
the earth in those days. Hats off to all of them! 

But in celebrating the accomplishments of that
golden age, I can’t quite escape the obvious nag-
ging question: What has everybody been doing
for the past 35 years? Can it be true that technolo-
gies conceived in the era of time-sharing, tele-
types and nine-track tape are the very best that
computer science has to offer in the 21st century?

Qwerks
It’s no secret that the success of a technology is
not always explained by merit alone; there are
also qwerks of history and qwerks of fate—
named for the most famous example, the qwerty
keyboard on which I am typing these words. The
qwerty layout is not the best possible arrangement
of the letters—it may even be the worst—but once

everyone has learned it, the cost of change is too
great. A slightly different kind of qwerk is some-
times cited to explain the ascendancy of the gaso-
line-fueled automobile engine. Whether or not
this powerplant was the best choice at the outset,
the argument goes, so much engineering effort
was invested in its development that rivals
couldn’t keep up. By now, the global infrastruc-
ture supporting gasoline engines gives them an
almost insuperable advantage. The story of color
television offers yet another variation on the
theme: The broadcast format adopted in the 1950s
was chosen not because it gave the highest pic-
ture quality but because it was compatible with
existing black-and-white TV sets. Even 50 years
later, replacing that suboptimal format with the
digital HDTV standard has been slow going.

These stories imply a certain mental model of
technological evolution. When a new product cat-
egory appears, there’s an initial free-for-all period,
in which diverse ideas compete on a more-or-less
equal basis. But multiple alternatives cannot co-
exist indefinitely. Eventually one technology be-
comes dominant—for whatever reason—and all
others are driven out. A latecomer to the market
has little hope of breaking in.

The trouble with this neat formulation is that
counterexamples are as easy to find as examples.
If it were true that an established technology
could never be dislodged from its niche, we
would still be listening to vinyl LP records. If
competing technologies could never co-exist, we
would not have three incompatible standards for
cellular telephones in the U.S., with a fourth stan-
dard prevalent elsewhere. It appears that some
technologies remain fluid over long periods,
whereas others freeze solid early in their history.
How do we tell them apart? What is it about au-
dio recording that has allowed such a profusion
of media (wax cylinders, 78s, 45s, 33s, eight-track
cartridges, cassette tapes, CDs, MP3s), while key-
boards have remained steadfastly faithful to
qwerty? Perhaps close examination of specific cas-
es and circumstances would explain these dis-
crepancies, but I don’t see much hope for a sim-
ple, predictive theory of technological evolution.

The realm of computing offers a great many
further illustrations of qwerkiness. Here I shall
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discuss two examples of strangely long-lived
technologies, both of them distinguished mem-
bers of the class of 1969: the Intel family of micro-
processors and the Unix operating system.

Eighty-Sixed
The chip that founded the Intel dynasty was de-
signed for a Japanese desktop calculator. The
processor, called the 4004, had about 2,300 tran-
sistors and operated on four bits of data at a time.
The 4004 was followed by the 8008 and the 8080,
which were eight-bit processors, and later by the
16-bit 8086. (A transitional morph designated the
8088 was chosen for the first IBM PC, in 1981.)
Later came the 80186 and the 80286; then, ex-
panding the data path to 32 bits, the 80386 and
the 80486. Just when we thought we understood
the naming scheme, the next chip in the series
was called the Pentium. There have been several
further iterations; the current model is the Pen-
tium 4, with a transistor count of 42 million.

The processors in the “x86” series have much
more in common than just the corporate logo
stamped on the package. (Indeed, chips made by
several other companies belong to the same fam-
ily.) All of the processors since the 8086 are ma-
chine-code compatible; that is, a program written
for the 8086 in 1978 should run without change
on the latest Pentium. This impressive feat of
backward compatibility did not come without
cost and effort. Through all the generations of
processors, the designers have had to preserve
the same basic architecture—features such as a
set of eight general-purpose registers, a parti-
tioning of the computer’s memory space into
fixed-size segments, and an instruction set that
by modern standards might best be described as
funky. The instructions vary in length from eight
bits to 108, and they include a baffling variety of
modes for addressing data in memory.

Fashions in computer engineering have
changed since 1969, and the x86 instruction set
now looks as retro as a pair of wide-wale bell-
bottoms. Stylish microprocessors these days are
mostly RISC designs—an acronym for reduced-
instruction-set computer. The instructions are kept
simple and few so that they can be executed very

fast. This strategy frees up space on the chip for
other resources, such as a large set of registers.
Uniformity and orthogonality are also prized
virtues of RISC designs: Usually, all the instruc-
tions have the same length and the same format,
and all the registers are interchangeable.

By now, RISC is everywhere in the world of
microprocessors—except the x86 line. Even Intel
has introduced RISC chips, as well as another ad-
venturous new technology called a very-long-
instruction-word processor, but these products
are not being marketed for mainstream personal
computers. One reading of this situation is that
Intel has been trapped by its own success. The
designers might well prefer to leave behind the
qwerks of the past, but the marketplace will not
allow them to abandon 25 years’ worth of “lega-
cy code” written for the x86 chips.

It’s interesting to compare Intel’s predicament
with the experience of Apple Computer, which
converted the Macintosh to a RISC architecture in
1994, yet maintained compatibility with older
software. The changeover was rather like jacking
up a house and moving it to a new foundation
while the family inside sat down for dinner. The
key to backward compatibility was an emulator, a
program running on the new hardware that im-
personates the old.

Why couldn’t Intel do something similar to lib-
erate their customers from the x86 architecture? In
fact they did, although the impersonation is done
in hardware rather than software. Inside the latest
Pentium processors is a core that looks nothing
like the earlier x86 chips; it is a RISC-like machine
with a large bank of registers and a repertoire of
simple instructions called R-ops (for RISC opera-
tions). But this core is entirely hidden from the
programmer, who continues to deal with the chip
as if it had the usual set of eight general-purpose
registers and other qwerks. A decoder on the chip
reads incoming x86 instructions and translates
them into R-ops. Most of the translations are
straightforward, but a few of the x86 instructions
give rise to streams of more than 100 R-ops.

One might try to argue that the Pentium 4
would be faster without the overhead of transla-
tion. The chip real estate dedicated to the decoder
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Figure 1. Although the world of computing is ever-changing, a surprising amount of computer technology has roots deep in the past. The Intel “x86”
line of microprocessors, the Unix operating system and the Internet all trace their heritage to 1969; the WIMP (windows, icons, menus, pointing de-
vice) interface is not much younger; and the mouse was invented in 1965. Numbers at the top give clock speeds of the corresponding processors.
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could be put to some other use that would im-
prove overall performance. This may be true. On
the other hand, users of Pentium 4 systems are
not complaining about traveling in the slow lane
while the world passes them by; on the contrary,
makers of other chips have had to struggle to
keep pace. The fastest Pentium has a clock rate
greater than 3 gigahertz. It is the gasoline engine
of computing.

Unix
Software, as the word itself suggests, is more
malleable than hardware, and so one might think
it would also be more ephemeral. The history of
Unix suggests otherwise.

Unix began as a small-scale, low-budget project
of Dennis M. Ritchie and Ken Thompson at Bell
Laboratories. It has grown and prospered. Today
it is the software of choice for scientific and engi-
neering workstations and for multicomputer
grids and clusters; it also runs many Internet
servers and other “back office” machines. The
Linux variant is installed on several million PCs.
Recently the Macintosh has become yet another
Unix box. Furthermore, Unix has exerted an un-
mistakable influence on other operating systems,
not least Microsoft Windows. In certain crucial in-
ternal structures, such as the organization of files
into nested directories, almost all computer sys-
tems today have adopted methods that were first
introduced in Unix. 

The early versions of Unix were written for
minicomputers in the PDP series, made by Digi-

tal Equipment Corporation. Many of those ma-
chines had only a few kilobytes of memory; disk
storage was equally scant; the standard means of
communicating with the computer was a hard-
copy teletypewriter or a text-only video termi-
nal. Looking back from our present abundance
of gigabytes and megapixels, it seems remark-
able that a complex software system could be
made to work at all on such primitive machin-
ery. That it would still be running today—and
would be widely regarded as the best of its
kind—is astonishing.

Of course the Unix of today is not your grand-
father’s operating system. If you wish, you can
still invoke programs from a 24-by-40-character
terminal (and some thoughtful people insist that
this “command line” remains the best interface),
but there are also glitzy window-and-mouse al-
ternatives. Under the hood, the internals of the
system have been rewritten over and over—so
much so that Unix has to be seen as a kind of
standing wave, a pattern that persists even
though all of its substance is constantly in flux.
Quite possibly, not one line of code has been pre-
served from the earliest versions. (In the case of
Linux, lawyers are currently wrangling over this
very question.) Nevertheless, the essence-of-
Unix has remained quite stable through all the
transformations.

Roots
When Unix was young, computers were scarce
and expensive, which meant that each machine
had many users. Dozens of terminals would be
wired to a single CPU, and it was the function of
time-sharing software like Unix to create the illu-
sion that you had a computer of your own. Part of
this magic trick lay in arranging for the processor
to switch tasks so rapidly that it could run snip-
pets of your program in between other users’ key-
strokes. Another aspect was walling off each user
in a separate compartment, so that no one could
trespass on anyone else’s space, either deliberate-
ly or inadvertently.

Computers are no longer scarce. In many of-
fices and even in some households, they outnum-
ber people. The challenge today is not dividing a
single CPU among multiple users but helping
each individual manage and coordinate the re-
sources of multiple machines. Where is the latest
version of that document you were looking for—
on the file server, on your laptop, on the PC at
home? These days it could even be on your key-
chain. A time-sharing operating system is not the
obvious solution to such problems. And yet Unix
and its offspring have adapted themselves sur-
prisingly well to this new environment.

Even on a computer with just a single user, the
task-switching mechanism remains vitally impor-
tant: It allows you to keep dozens of programs
active at the same time. And the barriers original-
ly meant to isolate users from one another now
prevent a rogue program from clobbering other

Figure 2. Intel Pentium 4 microprocessor, introduced in 2000, can run
programs written in the same instruction set as the Intel 8086, which
was announced in 1978. But the Pentium 4 does not execute those in-
structions directly. They are translated into the simpler commands of a
reduced-instruction-set computer (RISC). The chip has some 42 mil-
lion transistors; it is fabricated with a smallest feature size of 0.13 mi-
cron. Photograph reprinted by permission of Intel Corporation.



software. Admittedly, the multiuser security ap-
paratus can seem a little excessive—a little
qwerky—when you’re working all by yourself.
In the Unix social milieu, each user has a private
domain; groups of users can share resources;
there’s a public space accessible to all; and there’s
an inner sanctum off limits to everyone but the
“superuser,” also known as “root.” When you try
to delete a file and your laptop curtly objects,
“You don’t have permission to do that,” you will
probably not run down the hall looking for some-
one with root privileges.

But the scheme of file permissions, developed
for the hub-and-spoke world of time-sharing
computers, turns out to work reasonably well in
network file systems, which create a decentral-
ized information universe. A network file system
frees you to wander from one machine to another
within a local network, taking your entire com-
puting environment with you, including your pri-
vate documents and programs. 

Trees
My candidate for the most important single in-
novation introduced by Unix is the hierarchical
file system. I also consider it the feature most des-
perately in need of a better idea.

In the 1950s, a computer file system was a cab-
inet full of magnetic tapes, tended by a poor
drudge who retrieved them as needed. Disk stor-
age allowed information to be kept on-line with-
out manual intervention, but the early disks were
small enough that organizing files was not a seri-
ous problem. Nevertheless, Ritchie and Thomp-
son foresaw that a simple, flat list of files would

soon become unwieldy. Their solution, a tree of
directories nested inside directories, has held up
quite well for 35 years. (Incidentally, this phy-
logeny was recapitulated twice in the ontogeny of
microcomputers. The first versions of both MS-
DOS and the Macintosh operating system had no
nested subdirectories; they were flat file systems.
In both cases tree-structured directories were
added in the next release.)

The Unix file system has the topology of a root-
ed tree, a structure made up of linked nodes called
parents and children. The root of the tree—which
by qwerky tradition is always placed at the top—
is a special node that has no parent. Directly below
the root are its children, which can have children
of their own, and so on to arbitrary depth. Any
node can have any number of children (including
zero), but every node other than the root has ex-
actly one parent. Because of this single-parent con-
straint, there is always a unique path from the root
to any node of the tree. In other words, you can
find any directory or file by starting at the root
and following some path from parent to child—
and there will be only one such path. 

By now both the pleasures and the frustrations
of directory trees are familiar to all. When you or-
ganize your correspondence, you can do it
chronologically, setting up a directory for each
year, with nested directories for each month. Or
instead you can create a directory for each recipi-
ent. Or you can invent topical categories—love
letters, crank letters, letters to the editor. The trou-
ble is, any one such scheme precludes all the oth-
ers. If you arrange the files topically, you can’t
also keep them in chronological sequence. (A
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Figure 3. Trees of nested directories, a concept introduced in the first versions of Unix, have become the universal de-
vice for organizing computer files. Shown here is part of the tree for an implementation of the TeX typesetting system.
Only a few branches are drawn in detail; numbers in color indicate nodes not shown. Altogether there are some
13,700 files and directories. The structure is so elaborate that it has to be built by an automated installer.



mechanism called a symbolic link can create
shortcuts between distant nodes of the tree, but
it’s not a practical solution to this problem.)

The great advantage of trees as a data structure
is efficiency of access. Suppose you are searching
for a specific document among N files. Going
from file to file through a flat, unstructured list,
the effort required is proportional to N. With a
tree of directories, the effort is reduced to the log-
arithm of N—a tremendous gain. But for some val-
ue of N, even log N grows unreasonably large. 

I recently installed a new implementation of
the TeX typesetting system (another magnificent-
ly qwerky artifact, although it does not go back
quite as far as 1969). The system includes more
than 13,000 files; a small part of the tree is shown
in Figure 3. Note that for the program to work, it
is not enough that all the files be present; they
must also be in the right places. The hard work of
creating this structure was done by an automated
installer that goes out over the Internet, finds the
necessary components, and puts them where they
belong. I could never have constructed it by hand.
If it breaks, I have no idea how to fix it.

I take my own helplessness in this situation as
a sign that trees may be nearing their practical
limit as an organizational device. For a glimpse of
what could lie ahead, look at the third notable
technology among the 1969 alumni—the Internet,
and specifically the World Wide Web. The topolo-
gy of the Web is uncannily like that of a Unix file
system. Internet domain names take the form of a
tree (or rather a small copse of trees, since the top-
level domains .com, .org and so on are indepen-
dent roots). Hyperlinks between Web pages are
equivalent to symbolic links to Unix files. The
only difference is that the Web is several orders of
magnitude larger. So as personal file systems con-
tinue to grow, perhaps we will manage them with
the same kinds of tools we now use for the Web.
Indeed, it is widely assumed that the Web brows-
er will be the model for the next generation of op-
erating system. This is a prospect I do not find re-
assuring. The Web is a wonderful resource, but
few of us would view it as a reliable storage-and-
retrieval medium, where you can put something
in and count on getting it out again. I’d say it’s
more like a fishing hole, where you throw your
hook in and hope that something bites it. Don’t be
surprised if you see the error message “Go fish!” 

Qwerks to Come
The premise of this column is a bit of fraud. It’s
too easy to look back 35 years and pick out a few
ideas that proved to be winners; the real trick is to
name the present-day technologies that will
emerge as qwerks of the future. I’m not even sure
about the further evolution of the three choices
discussed here. In one form or another the Inter-
net will surely survive, and it’s a fair bet there
will be microprocessors that recognize x86 in-
structions for some time to come. But what will
systems software look like in 10 years, or 35? 

A number of visionary proposals are on the
record already. Jef Raskin, the first architect of the
Macintosh, offers the idea of a “zooming space”
to replace operating systems, Web browsers and
various other kinds of programs. The metaphor is
geographic: Documents are spread out over a
landscape, and the user soars above them, zoom-
ing in to see details and zooming out for an
overview. It’s an appealing (if slightly dizzying)
notion, but I wonder whether it will scale any bet-
ter than nested trees of directories.

David Gelernter of Yale argues that the key or-
ganizing principle should be temporal rather than
spatial. His “lifestreams” model arranges docu-
ments in sequences and subsequences, with vari-
ous facilities for browsing and searching. Under-
neath this interface is a database called tuple
space. It’s worth noting that both Raskin and
Gelernter focus on the problem of organizing doc-
uments—texts, music, pictures, or more generally
what nowadays tends to be called “content.” But
the original purpose of operating systems was
mainly to organize the software that runs the
computer itself, and this still needs to be done.
Can a zooming space or a lifestream help me
manage that gargantuan TeX tree?

The most radical proposal comes from Donald
A. Norman, another interface expert who was
once at Apple. He solves the complexity problem
at a stroke: If computers are too hard to use, just
get rid of them! They can be replaced by more-
specialized “information appliances”—one de-
vice to send e-mail, one to balance your check-
book, one to do tax returns, etc. I don’t trust
myself to gauge the plausibility of this idea be-
cause I find it so thoroughly uncongenial. I want
to know which information appliance replaces
the computer that I compute with. 

As for my own predictions, I’m going to para-
phrase an old joke that used to be told about the
Fortran programming language. I don’t know
what the operating system of the future will look
like. All I know is that it will be called Unix.
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