
Give a digital computer a problem in arith-
metic, and it will grind away methodical-
ly, tirelessly, at gigahertz speed, until ulti-

mately it produces the wrong answer. The cause
of this sorry situation is not that software is full of
bugs—although that is very likely true as well—
nor is it that hardware is unreliable. The problem
is simply that computers are discrete and finite
machines, and they cannot cope with some of the
continuous and infinite aspects of mathematics.
Even an innocent-looking number like 1⁄10 can
cause no end of trouble: In most cases, the com-
puter cannot even read it in or print it out exactly,
much less perform exact calculations with it.

Errors caused by these limitations of digital ma-
chines are usually small and inconsequential, but
sometimes every bit counts. On February 25, 1991,
a  Patriot missile battery assigned to protect a mil-
itary installation at Dahrahn, Saudi Arabia, failed
to intercept a Scud missile, and the malfunction
was blamed on an error in computer arithmetic.
The Patriot’s control system kept track of time by
counting tenths of a second; to convert the count
into full seconds, the computer multiplied by 1⁄10.
Mathematically, the procedure is unassailable, but
computationally it was disastrous. Because the
decimal fraction 1⁄10 has no exact finite representa-
tion in binary notation, the computer had to ap-
proximate. Apparently, the conversion constant
stored in the program was the 24-bit binary frac-
tion 0.00011001100110011001100, which is too
small by a factor of about one ten-millionth. The
discrepancy sounds tiny, but over four days it
built up to about a third of a second. In combina-
tion with other peculiarities of the control soft-
ware, the inaccuracy caused a miscalculation of
almost 700 meters in the predicted position of the
incoming missile. Twenty-eight soldiers died.

Of course it is not to be taken for granted that
better arithmetic would have saved those 28
lives. (Many other Patriots failed for unrelated
reasons; some analysts doubt whether any Scuds
were stopped by Patriots.) And surely the under-
lying problem was not the slight drift in the clock
but a design vulnerable to such minor timing

glitches. Nevertheless, the error in computer
multiplication is mildly disconcerting. We would
like to believe that the mathematical machines
that control so much of our lives could at least do
elementary arithmetic correctly.

One approach to dealing with such numerical
errors is a technique called interval arithmetic. It
does nothing directly to improve the accuracy of
calculations, but for every number it provides a
certificate of accuracy—or the lack of it. The result
of an ordinary (non-interval) computation is a sin-
gle number, a point on the real number line,
which lies at some unknown distance from the
true answer. An interval computation yields a
pair of numbers, an upper and a lower bound,
which are guaranteed to enclose the exact answer.
Maybe you still don’t know the truth, but at least
you know how much you don’t know.

Measuring Ignorance
Suppose you are surveying a rectangular field. No
matter how carefully you read the measuring
tape, you can never be certain of the exact dimen-
sions, but you can probably state with confidence
that the correct figures lie within certain bounds.
Perhaps you are sure the length is no less than 68
meters and no more than 72, while the width is be-
tween 49 and 51 meters. Then you can state with
equal confidence that the area of the field lies
somewhere between 3,332 square meters and
3,672 square meters. This is interval arithmetic in
action: [68, 72] × [49, 51] = [3,332, 3,672]. (The
bracketed pair [a, b] signifies the interval from a to
b inclusive, with a ≤ b. Another useful notation is
[x–, x–], where the underscore indicates a lower lim-
it and the overscore an upper limit.)

Doing basic arithmetic with intervals is not
much more difficult than with ordinary (“point-
like”) numbers. Indeed, a single formula extends
the definition of  the four standard arithmetic op-
erations to intervals. If ° represents any of the
operations +, –, × or ÷, then the corresponding
interval operation is defined as:

[u–, u–]°[v–, v–] = [min(u–°v–, u–°v–, u–°v–, u–°v–),
max(u–°v–, u–°v–, u–°v–, u–°v–)].

In other words, compute the four possible com-
binations of the upper and lower bounds, then
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choose whichever of these results is the smallest
as the new lower bound, and likewise take the
largest as the new upper bound. Every possible
combination u°v must lie within these limits.

The min-max formula is a convenient definition
of interval operations, but it is not always the best
implementation. For example, in the case of addi-
tion it’s obvious that u–+v– will always be the small-
est sum, and u–+v– the largest, so that interval ad-
dition is simply [u–, u–]+[v–, v–] = [u–+v–, u–+v–]. By
similar reasoning, subtraction is just [u–, u–]–[v–, v–] =
[u––v–, u––v–]. Multiplication is not quite as well-
behaved. Although shortcuts are sometimes pos-
sible (depending on the signs of the operands), in
the worst case there is no choice but to compute all
four of the combinations and select the extrema.

Division is much like multiplication, but with
a further annoyance—the possibility of a zero di-
visor. With pointlike numbers, if you try to carry
out an operation such as 2 ÷0, the error is obvi-
ous, and the system software will prevent you
from doing the impossible. An interval division
such as [2, 4] ÷[–1, 1] has the same problem, but
in disguise. You could very well perform the nec-
essary calculations on the end points of the inter-
vals without raising any alarms and without
noticing that the divisor interval includes the
value zero. But the answer you would arrive at in
this way, [–4, 4], is utterly wrong. It’s not just
wrong in the formal sense that it might be tainted
by an illegal operation. It’s also wrong because
the interval [–4, 4] does not enclose all possible
quotients, even if the zero point itself is excluded
from the divisor. A reliable system for interval
arithmetic needs protection against this hazard.
Usually, division by an interval that includes zero
is simply forbidden, although there are also other
ways of coping with the problem.

Apart from the rules for manipulating intervals
arithmetically, there remains the question of what
an interval really is and how we ought to think
about it. In the context of dealing with errors and
uncertainties of computation, we may see [x–, x–]
as standing for some definite but unknown value
x such that x– ≤ x ≤ x–. But [x–, x–] could also be inter-
preted as the set of all real numbers between x–
and x–—in other words, as a closed segment of the

real number line. Or the interval [x–, x–] could be
taken as denoting a new kind of number, in much
the same way that two real numbers x and y com-
bine to specify the complex number x+iy (where i
represents the square root of –1). This last view is
the most ambitious. It suggests the goal of a com-
puting system where intervals are just another
data type, interchangeable with other kinds of
numbers. Wherever a pointlike number can ap-
pear in a program, an interval can be substituted.
Conversely, exact pointlike numbers can be rep-
resented by “degenerate” intervals of zero width;
the number 2 could be written [2, 2].

Perils of Precision
Why should we have to put up with errors and
approximations in computing? Why can’t the
computer just give the right answer?

Sometimes it can. Calculations done entirely
with integers yield exact results as long as the
numbers are not too big for the space allotted. Of-
ten the allotted space is quite scanty—as little as
16 bits—but this is an artificial constraint; in prin-
ciple a computer can store the exact value of any
integer that will fit in its memory.

Integers have the pleasant property that they
form a closed set under addition, subtraction and
multiplication; in other words, when you add,
subtract or multiply any two integers, you always
get another integer. Absent from this list of opera-
tions is division, because the quotient of two inte-
gers is not always an integer. If we allow numbers
to be divided, we must go beyond the integers to
the rational numbers, such as 2⁄3 or 3⁄2. But rational
values can also be represented exactly in the com-
puter; all that’s needed is to keep track of a pair of
integers, which are interpreted as the numerator
and the denominator. Thus the constant 1⁄10, which
caused such havoc in the Patriot software, could
have been encoded in the two binary integers 1
and 1010. A few programming languages—no-
tably Lisp and its offspring—provide integers of
unlimited size (“bignums”) and exact rationals as
built-in data types. Similar facilities can be added
to other languages.

If we can have exact numerical computation,
why would anyone choose approximate arith-
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Figure 1. Computer numbering systems include integers, rationals and floating-point numbers, but none of these schemes can represent all possi-
ble quantities. For irrational values such as ππand the square root of 2, the best you can do is choose the nearest representable number. Intervals
(shown here in yellow) bracket an unrepresentable number and thereby put bounds on the error of approximation.
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metic? One reason is that there are numbers be-
yond the rationals: No ratio of finite integers
gives the exact value of √2

–
or π or log2(3). Per-

haps more important, exact computations tend
to become hopelessly unwieldy. Consider the se-
ries 1 + 1⁄2 + 1⁄4 + 1⁄8 + 1⁄16 + .... If you sum a thousand
terms, the result is vanishingly close  to 2, but the
exact rational representation fills two thousand
binary digits. Doing arithmetic with such obese
numbers is slow and cumbersome. And outside
the realm of pure mathematics the cost of main-
taining exactness is seldom justified. Nothing in
the physical world can be measured with such
precision anyway.

The usual alternative to exact rational compu-
tations is floating-point arithmetic, a scheme that
resembles scientific notation. A number takes the
form D×βE, where D is called the significand, E is
the exponent, and β is the base (which in modern
computer systems is always 2). For example, the

decimal number 6.0 can be expressed as 0.75 × 23,
with significand 0.75 and exponent 3. In this case
the representation is exact, in binary as well as in
decimal (the binary significand is 0.11). Other
numbers are not so lucky. As noted above, no fi-
nite significand corresponds exactly to the deci-
mal fraction 1⁄10. Furthermore, it’s obvious that
some numbers must be missing from the system
simply because it has only a finite capacity. In one
common floating-point format, the total space
available for storing the significand and the expo-
nent is 32 bits, and so the system cannot possibly
hold more than 232 distinct numbers, or about 4
billion of them. If you need a number that is not a
member of this finite set, the best you can do is
choose the nearest member as an approximation.
The difference between the true value and the ap-
proximation is the roundoff error.

Interval arithmetic cannot eliminate roundoff
error, but it can fence it in. When a result x falls
between two floating-point values, those nearest
representable numbers become the lower and up-
per bounds of the interval [x–, x–]. But this is not the
end of the story. Subsequent computations could
yield a new interval for which x– and x– are them-
selves numbers that have no exact floating-point
representation. In this situation, where even the
interval has to be approximated, rounding must
be done with care. To preserve the guarantee that
the true value always lies within the interval, the
end points of the interval must be rounded “out-
ward”: x– is rounded down and x– is rounded up.  

Historical Intervals
Interval arithmetic is not a new idea. Invented
and reinvented several times, it has never quite
made it into the mainstream of numerical com-
puting, and yet it has never been abandoned or
forgotten either.

In 1931 Rosalind Cicely Young, a recent Cam-
bridge Ph.D., published an “algebra of many-
valued quantities” that gives rules for calculating
with intervals and other sets of real numbers. Of
course Young and others writing in that era did
not see intervals as an aid to improving the relia-
bility of machine computation. By 1951, however,
in a textbook on linear algebra, Paul S. Dwyer of
the University of Michigan was describing arith-
metic with intervals (he called them “range num-
bers”) in a way that is clearly directed to the
needs of computation with digital devices.

A few years later, the essential ideas of interval
arithmetic were set forth independently and al-
most simultaneously by three mathematicians—
Mieczyslaw Warmus in Poland, Teruo Sunaga in
Japan and Ramon E. Moore in the United States.
Moore’s version has been the most influential, in
part because he emphasized solutions to problems
of machine computation but also because he has
continued for more than four decades to publish
on interval methods and to promote their use.

Today the interval-methods community in-
cludes active research groups at a few dozen uni-

Figure 3. Comparisons between intervals are more complicated than
those of pointlike numbers. There are 18 meaningful relations between
intervals (including cases where one or both intervals are in fact point-
like). It’s unclear even how to name all these comparisons; one encod-
ing lists the relations of the four pairs of end points in a fixed sequence.
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Figure 2. Numerically unstable formulas can cause a catastrophic loss of
accuracy; although interval arithmetic cannot prevent such failures, it
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University of Texas at Austin.
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versities. A web site at the University of Texas at
El Paso (www.cs.utep.edu/interval-comp) pro-
vides links to these groups as well as a useful
archive of historical documents. The journal Reli-
able Computing (formerly Interval Computations) is
the main publication for the field; there are also
mailing lists and annual conferences. Implemen-
tations of interval arithmetic are available both
as specialized programming languages and as li-
braries that can be linked to a program written in
a standard language. There are even interval
spreadsheet programs and interval calculators.

One thing the interval community has been ar-
dently seeking—so far without success—is sup-
port for interval algorithms in standard comput-
er hardware. Most modern processor chips come
equipped with circuitry for floating-point arith-
metic, which reduces the process of manipulating
significands and exponents to a single machine-
language instruction. In this way floating-point
calculations become part of the infrastructure,
available to everyone as a common resource.
Analogous built-in facilities for interval compu-
tations are technologically feasible, but manufac-
turers have not chosen to provide them. A 1996
article by G. William Walster of Sun Microsys-
tems asks why. Uncertainty of demand is surely
one reason; chipmakers are wary of devoting re-
sources to facilities no one might use. But Walster
cites other factors as well. Hardware support for
floating-point arithmetic came only after the
IEEE published a standard for the format. There
have been drafts of standards for interval arith-
metic (the latest written by Dmitri Chiriaev and
Walster in 1998), but none of the drafts has been
adopted by any standards-setting body.

Gotchas
Although the principles of interval computing
may seem obvious or even trivial, getting the al-
gorithms right is not easy. There are subtleties.
There are gotchas. The pitfalls of division by an
interval that includes zero have already been
mentioned. Here are a few more trouble spots.

In doing arithmetic, we often rely on mathe-
matical laws or truths such as x + –x = 0 and
(a + b)x = ax + bx. With intervals, some of these
rules fail to hold. In general, an interval has no
additive inverse; that is, given a nondegenerate
interval [u–, u–], there is no interval [v–, v–] for which
[u–, u–]+[v–, v–] = [0,0]. There is no multiplicative in-
verse either—no pair of nondegenerate intervals
for which [u–, u–]×[v–, v–] = [1,1]. The reason is clear
and fundamental: No valid operation can ever di-
minish the width of an interval, and [0,0] and [1,1]
are intervals of zero width.

The distributive law also fails for intervals. In
an expression such as [1,2] × ([–3,–2] + [3,4]), it
makes a difference whether you do the addition
first and then multiply, or do two multiplications
and then add. One sequence of operations gives
the result [0,4], the other [–3,6]. Strictly speaking,
either of these results is correct—both of them

bound any true value of the original expression—
but the narrower interval is surely preferable.

Another example: squaring an interval. The
obvious definition [x–, x–]2 = [x–, x–] × [x–, x–] seems to
work in some cases, such as [1,2]2 = [1,4]. But
what about [–2,2]2 = [–4,4]? Whoops! The square
of a real number cannot be negative. The source
of the error is treating the two appearances of
[x–, x–] in the right-hand side of the formula as if
they were independent variables; in fact, what-
ever value x assumes in one instance, it must be
the same in the other. The same phenomenon can
arise in expressions such as 2x/x. Suppose x is
the interval [2,4]; then naïvely following the rules
of interval arithmetic yields the answer [1,4]. But
of course the correct value is 2 (or [2,2]) for any
nonzero value of x.

Comparisons are yet another murky area.
Computer programs rely heavily on conditional
expressions such as “if (x < y) then....” When x
and y are intervals, the comparison gets tricky. Is
[1, 3] less than [2, 4], or not? Whereas there are
just three elementary comparisons for pointlike
numbers (<, = and >), there are as many as 18
well-defined relations for intervals. It’s not al-
ways obvious which one to choose, or even how
to name them. (Chiriaev and Walster refer to
“certainly relations” and “possibly relations.”)

Finally, look at what happens if a naïve im-
plementation of the sine function is given an in-
terval argument. Sometimes there is no prob-
lem: sin([30°,60°]) yields the correct interval
[0.5,0.866]. But sin([30°,150°]) returns [0.5,0.5],
which is an error; the right answer is [0.5,1.0].
What leads us astray is the assumption that in-
terval calculations can be based on end points
alone, which is true only for monotonic functions
(those that never “change direction”). For other
functions it is necessary to examine the interior of
an interval for minima and maxima.

In fairness, it should be noted that many cher-
ished mathematical truths fail even in ordinary
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Figure 4. Diagrammatic scheme introduced by Zenon Kulpa of the
Polish Academy of Sciences represents an interval as a point on a
plane, somewhat like the representation of a complex number. Position
of the point along the horizontal axis gives the value of the midpoint of
the interval; height on the vertical axis encodes the radius (or half the
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the interval itself. Any point within the shaded region represents an
interval that includes the value zero.



(noninterval) floating-point arithmetic. An iden-
tity such as x = √x2– is not to be trusted in floating
point. And there are remedies for all the interval
gotchas mentioned above—or at least strategies
for coping with them. M. H. van Emden has
shown that by building on the existing IEEE
floating-point standard (including its facilities for
representing infinity), it would be possible to cre-
ate a system of interval arithmetic that would
never fall into an error state, not even as a result
of division by zero. (Of course the system would
sometimes return results such as [–∞,+∞], which
may be of questionable utility.)

Intervals at Work
The interval community can point to a number
of success stories. In 1995 Joel Hass, Michael
Hutchings and Roger Schlafly proved part of the
“double-bubble conjecture” by a method that en-
tailed extensive numerical calculations; they used
interval methods to establish rigorous bounds on
computational errors. The conjecture concerns
soap films enclosing a pair of volumes, and states
that the common configuration of two conjoined
quasi-spherical bubbles has the smallest surface-
to-volume ratio. Hass, Hutchings and Schlafly
proved the conjecture for the case of two equal
volumes, essentially by calculating the best possi-
ble ratio for all configurations. The calculations
did not have to be exact, but any errors had to be
smaller than the differences between the various
ratios. Interval methods provided this guarantee.
(The general case of the double-bubble conjecture
was proved a few years later by Hutchings, Frank
Morgan, Manuel Ritoré and Antonio Ros—with-
out interval arithmetic and indeed without com-
puters, using “only ideas, pencil, and paper.”)

A quite different application of interval meth-
ods was reported in 1996 by Oliver Holzmann,
Bruno Lang and Holger Schütt of the University
of Wuppertal. Instead of trying to control the er-
rors of a calculation, they were estimating the
magnitude of errors in a physical experiment. The
experiment was a measurement of Newton’s
gravitational constant G, done with two pendu-
lums attracted to large brass weights. The interval
analysis assessed various contributions to the un-
certainty of the final result, and discovered a few
surprises. An elaborate scheme had been devised
for measuring the distance between the swinging
pendulums, and as a result this source of error
was quite small; but uncertainties in the height of
the brass weights were found to be an important
factor limiting the overall accuracy.

Would we be better off if intervals were used
for all computations? Maybe, but imagine the
plight of the soldier in the field: A missile is to be
fired if and only if a target comes within a range
of 5 kilometers, and the interval-equipped com-
puter reports that the distance is [4,6] kilometers.
This is rather like the weather forecast that
promises a 50-percent chance of rain. Such state-
ments may accurately reflect our true state of

knowledge, but they’re not much help when you
have to decide whether to light the fuse or take
the umbrella. But this is a psychological problem
more than a mathematical one. Perhaps the solu-
tion is to compute with intervals, but at the end
let the machine report a definite, pointlike answer,
chosen at random from within the final interval.
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