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The year: 1972. The scene: Afternoon tea in
Fuld Hall at the Institute for Advanced
Study. The camera pans around the Com-

mon Room, passing by several Princetonians in
tweeds and corduroys, then zooms in on Hugh
Montgomery, boyish Midwestern number theo-
rist with sideburns. He has just been introduced
to Freeman Dyson, dapper British physicist.

Dyson: So tell me, Montgomery, what have you
been up to?

Montgomery: Well, lately I’ve been looking into
the distribution of the zeros of the Riemann zeta
function.

Dyson: Yes? And?
Montgomery: It seems the two-point correlations

go as.... (turning to write on a nearby blackboard):

Dyson: Extraordinary! Do you realize that’s the
pair-correlation function for the eigenvalues of a
random Hermitian matrix? It’s also a model of
the energy levels in a heavy nucleus—say U-238.

I present this anecdote in cinematic form be-
cause I expect to see it on the big screen someday,
now that mathematicians outgun cowboys and se-
cret agents at the box office. Besides, the screen-
play genre gives me license to dramatize and em-
bellish a little. By the time the movie opens at your
local multiplex, the script doctors will have taken
further liberties with the facts. For example, the
equation for nuclear energy levels will have be-
come the secret formula of the atomic bomb.

Even without Hollywood hyperbole, however,
the chance encounter of Montgomery and Dyson
was a genuinely dramatic moment. Their con-
versation revealed an unsuspected connection
between areas of mathematics and physics that
had seemed remote. Why should the same equa-
tion describe both the structure of an atomic nu-
cleus and a sequence at the heart of number the-
ory? And what do random matrices have to do
with either of those realms? In recent years, the
plot has thickened further, as random matrices
have turned up in other unlikely places, such as

games of solitaire, one-dimensional gases and
chaotic quantum systems. Is it all just a cosmic
coincidence, or is there something going on be-
hind the scenes?

The Spectrum of Interstatium
How things distribute themselves in space or time
or along some more abstract dimension is a ques-
tion that comes up in all the sciences. An as-
tronomer wants to know how galaxies are scat-
tered around the universe; a biologist might study
the distribution of genes along a strand of chro-
matin; a seismologist records the temporal pattern
of earthquakes; a mathematician ponders the
sprinkling of prime numbers among the integers.
Here I shall consider only discrete, one-dimen-
sional distributions, where the positions of items
can be plotted along a line.

Figure 1 shows samples of several such distri-
butions, some of them mathematically defined
and others derived from measurements or obser-
vations. All of the samples have been scaled so
that exactly 100 levels fit in the space allotted.
Thus the mean distance between levels is the
same in all cases, but the patterns are nonetheless
quite diverse. For example, the earthquake series
is highly clustered, which surely reflects some
geophysical mechanism. The lower-frequency
fluctuations of tree-ring data probably have both
biological and climatological causes. And it’s
anyone’s guess how to explain the locations of
bridges recorded while driving along a stretch of
Interstate highway.

In analyzing patterns of this kind, there is sel-
dom much hope of predicting the positions of in-
dividual elements in a series. The aim is statistical
understanding—a description of a typical pattern
rather than a specific one. I shall focus on two sta-
tistical measures: nearest-neighbor spacings and
the two-point correlation function.

The simplest of all distributions is a periodic
one. Think of a picket fence or the monotonous
ticking of a clock: All the intervals between ele-
ments of the series are exactly the same. The ob-
vious counterpoint to such a repetitive pattern is
a totally random one. And between these ex-
tremes of order and disorder there are various
intermediate possibilities, such as a “jiggled”
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picket fence, where periodic levels have been
randomly displaced by a small amount.

A graph of nearest-neighbor spacings readily
distinguishes among the periodic, random and
jiggled patterns (see Figure 2). For the periodic
distribution, the graph is a single point: All the
spacings are the same. The nearest-neighbor
spectrum of the random distribution is more in-
teresting: The frequency of any spacing x is pro-
portional to e–x. This negative-exponential law
implies that the smallest spacing between levels
is the likeliest. The jiggled pattern yields a bell-
shaped curve, suggesting that the nearest-neigh-
bor intervals have a Gaussian distribution.

The pair-correlation function mentioned by
Montgomery and Dyson captures some of the
same information as the nearest-neighbor spec-
trum, but it is calculated differently. For each dis-
tance x, the correlation function counts how many
pairs of levels are separated by x, whether or not
those levels are nearest neighbors. The pair-corre-
lation function for a random distribution is flat,
since all intervals are equally likely. As the distri-
bution becomes more orderly, the pair-correlation
function develops humps and ripples; for the pe-
riodic distribution it is a series of sharp spikes.

Erbium and Eigenvalium
Among the spectra in Figure 1 is a series of 100 en-
ergy levels of an atomic nucleus, measured 30
years ago with great finesse by H. I. Liou and

James Rainwater and their colleagues at Columbia
University. The nucleus in question is that of the
rare-earth element erbium-166. A glance at the
spectrum reveals no obvious patterns; neverthe-
less, the texture is quite different from that of a
purely random distribution. In particular, the er-
bium spectrum has fewer closely spaced levels
than a random sequence would. It’s as if the nu-
clear energy levels come equipped with springs
to keep them apart. This phenomenon of “level
repulsion” is characteristic of all heavy nuclei.

What kind of mathematical structure could ac-
count for such a spectrum? This is where those
eigenvalues of random Hermitian matrices enter
the picture. They were proposed for this purpose
in the 1950s by the physicist Eugene P. Wigner. As
it happens, Wigner was another Princetonian,
who could therefore make an appearance in our
movie. Let him be the kindly professor who ex-
plains things to a dull student, while the audience
nods knowingly. The dialogue might go like this:

Wigner: Come, we’ll make ourselves a random
Hermitian matrix. We start with a square array,
like a chessboard, and in each little square we put
a random number....

Student: What kind of number? Real? Complex?
Wigner: It works with either, but real is easier.
Student: And what kind of random? Do we take

them from a uniform distribution, a Gaussian...?
Wigner: Customarily Gaussian with mean 0

and variance 1, but this is not critical. What is
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Figure 1. One-dimensional distributions each consist of 100 levels. From left to right the spectra are: a periodic array of evenly spaced lines; a ran-
dom sequence; a periodic array perturbed by a slight random “jiggling” of each level; energy states of the erbium-166 nucleus, all having the same
spin and parity quantum numbers; the central 100 eigenvalues of a 300-by-300 random symmetric matrix; positions of zeros of the Riemann zeta
function lying just above the 1022nd zero; 100 consecutive prime numbers beginning with 103,613; locations of the 100 northernmost overpasses and
underpasses along Interstate 85; positions of crossties on a railroad siding; locations of growth rings from 1884 through 1983 in a fir tree on Mount
Saint Helens, Washington; dates of California earthquakes with a magnitude of 5.0 or greater, 1969 to 2001; lengths of 100 consecutive bike rides. 
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critical is that the matrix be Hermitian. A Her-
mitian matrix—it’s named for the French mathe-
matician Charles Hermite—has a special sym-
metry. The main diagonal, running from the
upper left to the lower right, acts as a kind of
mirror, so that all the elements in the upper tri-
angle are reflected in the lower triangle.

Student: Then the matrix isn’t really random,
is it?

Wigner: If you insist, we’ll call it half-random.
We fill the upper half with random numbers, and
then we copy them into the lower half. So now
we have our random Hermitian matrix M, and
when we calculate its eigenvalues....

Student: But how do I do that?
Wigner: You start up Matlab and you type

“eig(M)”!
Eigenvalues go by many names, all of them

equally opaque: characteristic values, latent
roots, the spectrum of a matrix. Definitions, too,
are more numerous than helpful. For present
purposes it seems best to say that every N-by-N
matrix is associated with an Nth-degree polyno-
mial equation, and the eigenvalues are the roots
of this equation. There are N of them. In general,
the eigenvalues can be complex numbers, even
when the elements of the matrix are real, but the
symmetry of a Hermitian matrix ensures that all
the eigenvalues will be real. Hence they can be
sorted from smallest to largest and arranged
along a line, like energy levels. In this configura-
tion they look a lot like the spectrum of a heavy
nucleus. Of course the eigenvalues do not match
any particular nuclear spectrum level-for-level,
but statistically the resemblance is strong. 

When I first heard of the random-matrix con-
jecture in nuclear physics, what surprised me
most was not that it might be true but that anyone
would ever have stumbled on it. But Wigner’s
idea was not just a wild guess. In Werner Heisen-
berg’s formulation of quantum mechanics, the
internal state of an atom or a nucleus is repre-
sented by a Hermitian matrix whose eigenvalues
are the energy levels of the spectrum. If we knew
the entries in all the columns and rows of this
matrix, we could calculate the spectrum exactly.
Of course we don’t have that knowledge, but
Wigner’s conjecture suggests that the statistics of
the spectrum are not terribly sensitive to the spe-
cific matrix elements. Thus if we just choose a
typical matrix—a large one with elements select-
ed according to a certain statistical rule—the pre-
dictions should be approximately correct. The
predictions of the model were later worked out
more precisely by Dyson and others.

Eulerium and Riemannium
So much for nuclear physics; what about number
theory and the zeta function?

The most celebrated sequence in number theo-
ry is that of the primes: 2, 3, 5, 7, 11.... The overall
trend in this series is well known. In the neigh-
borhood of any large integer x, the proportion of
numbers that are prime is approximately 1/log
x, which implies that although the primes go on
forever, they get sparser as you climb farther out
on the number line. Superimposed on this grad-
ual thinning of the crop are smaller-scale fluctua-
tions that are harder to understand in detail. The
sequence of primes looks quite random and er-
ratic, and yet it cannot possibly have the same
nearest-neighbor statistics as a truly random spec-
trum. The nearest that two primes can approach
each other (except in one anomalous case) is 2.
Pairs that have this minimum spacing, such as 29
and 31, are called twin primes. No one knows
whether there are infinitely many of them.

In addition to directly exploring the primes,
mathematicians have taken a roundabout ap-
proach to understanding their distribution by
way of the Riemann zeta function. This function,
although named both by and for Bernhard Rie-
mann, was first studied in the 18th century by
Leonhard Euler, who defined it as a sum over all
the natural numbers:

In other words, take each natural number n from 1
to infinity, raise it to the power s, take the recipro-
cal, and add up the entire series. The sum is finite
whenever s is greater than 1. For example, Euler
showed that ζ(2) is equal to π2/6, or about 1.645:

Euler also proved a remarkable identity, equating
the summation formula, with its one term for

ζ(2) = 
12
1 +
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Figure 3. Two-point correlation function measures the number of pairs
of levels separated by any given distance. For a random set of levels all
intervals are equally likely, whereas the curve for a “jiggled” series has
a peak at every multiple of the mean nearest-neighbor spacing.
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Figure 2. Nearest-neighbor spacing paints a simple statistical portrait of
a distribution. For a periodic series the nearest-neighbor curve has a
single nonzero point; for random levels the curve follows an exponen-
tial law; the “jiggled” series yields a graph that looks Gaussian.
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each natural number, to a product formula that
has one term for each prime. This second defini-
tion states:

The recipe in this case is to take each prime p
from 2 to infinity, raise it to the power s, then af-
ter some further arithmetic multiply together the
terms for all p. The result is the same as that of
the summation. This connection between a sum
over all integers and a product over all primes
was a hint that the zeta function might have
something to say about the distribution of primes
among the integers, and in fact the two series are
intimately related.

Riemann’s contribution, in 1859, was to extend
the domain of the zeta function so that it applies
not just when s is a real number greater than 1
but when s is any number—positive or negative,
real or complex—with the single exception of
numbers whose real part is equal to 1. Over
much of the complex plane the function turns
out to be wildly oscillatory, crossing from posi-
tive to negative values infinitely often. The cross-
ing points, where ζ(s) = 0, are called the zeros of
the zeta function. There is an infinite series of them
along the negative real axis, but these are not
looked upon with great interest. Riemann called
attention to a different infinite series of zeros lying
above and below the real axis in a vertical strip of
the complex plane that includes all numbers
whose real part is between 0 and 1. Riemann cal-
culated the locations of the first three of these
zeros and found that they lie right in the middle of
the strip, on the “critical line” with real coordinate
1/2. On the basis of this evidence, plus incredible
intuition, he conjectured that all the complex
zeros are on the critical line. This is the Riemann
hypothesis, widely regarded as the juiciest prize
plum in all of contemporary mathematics.

In the years since Riemann located the first
three zeta zeros, quite a few more have been
found. A cooperative computing network called
ZetaGrid, organized by Sebastian Wedeniwski of
IBM, has checked 385 billion of them. So far,
every one is on the critical line. There’s even a
proof that infinitely many lie on the line, but
what’s wanted is a proof that none lie anywhere
else. That goal remains out of reach.

In the meantime, other aspects of the zeta
zeros have come under scrutiny. Assuming that
all the zeros are indeed on the critical line, what is
their distribution along that line? How does their
density vary as a function of the “height,” T,
above or below the real axis?

As with the primes, the overall trend in the
abundance of zeta zeros is known. The trend
goes the opposite way: Whereas primes get rarer
as they get larger, the zeta zeros crowd together
with increasing height. The number of zeros in
the neighborhood of height T is proportional to
log T, signifying a slow increase. But, again, the

trend is not smooth, and the details of the fluctu-
ations are all-important. Gaps and clumps in the
series of zeta zeros encode information about cor-
responding features in the sequence of primes.

Montgomery’s work on the pair-correlation
function of the zeta zeros was a major step to-
ward understanding the statistics of the fluctua-
tions. And the encounter in Fuld Hall, when it
emerged that Montgomery’s correlation formula
is the same as that for eigenvalues of random
matrices, ignited further interest. The correlation
function implies level repulsion among the zeros
just as it does in the nucleus, producing a defi-
ciency of closely spaced zeros.

Montgomery’s result is not a theorem; his proof
of it is contingent on the truth of the Riemann Hy-
pothesis. But the accuracy of the correlation func-
tion can be tested by comparing the theoretical
prediction with computed values of zeta zeros.
Over the past 20 years Andrew M. Odlyzko, now
at the University of Minnesota, has taken the

ps
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Figure 4. Zeros of the Riemann zeta function have near-
est-neighbor spacings closely matched by the predictions
of random-matrix theory. Red dots represent positions of
a billion zeta zeros above the 1023rd such zero; the blue
line is the predicted spacing. Data for this graph and for
Figure 5 were supplied by Andrew M. Odlyzko.
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Figure 5. Pair-correlation function for a billion zeta zeros
near the 1023rd zero also matches the prediction. The blue
theoretical curve is the function 1– (sin(πx)/πx)2 dis-
cussed in 1972 by Montgomery and Dyson. Note the evi-
dence of “level repulsion”: Closely spaced zeros are rare.



computation of zeta zeros to heroic heights in or-
der to perform such tests. For this purpose it is
not enough to verify that the zeros lie on the crit-
ical line; the program must accurately measure
the height of each zero along that line, which is a
more demanding task. One of Odlyzko’s early
papers was titled “The 1020th zero of the Riemann
zeta function and 175 million of its neighbors.”
Since then he has gone on to compute even longer
series of consecutive zeros at even greater heights,
now reaching the neighborhood of the 1023rd
zero. The agreement between predicted and mea-
sured correlations is striking, and it gets better
and better with increasing height.

The Operator of the Universe
Is it all just a fluke, this apparent link between
matrix eigenvalues, nuclear physics and zeta
zeros? It could be, although a universe with such
chance coincidences in its fabric might be con-
sidered even stranger than one with mysterious
causal connections.

Another possible explanation is that the statisti-
cal distribution seen in these three cases (and in
several others I have not discussed) is simply a
very common way for things to organize them-
selves. There is an analogy here with the Gaussian
distribution, which turns up everywhere in nature
because many different processes all lead to it.
Whenever multiple independent contributions are
summed up, the outcome is the familiar bell-
shaped Gaussian curve: This observation is the
essence of the Central Limit Theorem. Maybe
some similar principle makes the eigenvalue dis-
tribution ubiquitous. Thus for Montgomery and
Dyson to come up with the same correlation func-
tion would not be such a long shot after all.

Still another view is that the zeros of the zeta
function really do represent a spectrum—a series
of energy levels just like those of the erbium nu-
cleus, but generated by the mathematical element
Riemannium. This idea traces back to David
Hilbert and George Pólya, who both suggested
(independently) that the zeros of the zeta func-
tion might be the eigenvalues of some unknown
Hermitian “operator.” An operator is a mathe-
matical concept that seems on first acquaintance
rather different from a matrix—it is a function
that applies to functions—but operators too have
eigenvalues, and a Hermitian operator has sym-
metries that make all the eigenvalues real num-
bers, just as in the case of a Hermitian matrix.

If the Hilbert-Pólya thesis is correct, then ran-
dom-matrix methods succeed in number theory
for essentially the same reason they work in nu-
clear physics—because the detailed structure of a
large matrix (or operator) is less important than
its global symmetries, so that any typical matrix
with the right symmetries will produce statisti-
cally similar results. Behind these approximations
stands some unique Hermitian operator, which
determines the exact position of all the Riemann
zeros and hence the distribution of the primes. 

Is that universal operator really out there, wait-
ing to be discovered? Will it ever be identified? For
the answers to those questions you’ll have to see
the movie. I don’t want to give away the ending.
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