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One of the cherished customs of child-
hood is choosing up sides for a ball
game. Where I grew up, we did it this

way: The two chief bullies of the neighborhood
would appoint themselves captains of the op-
posing teams, and then they would take turns
picking other players. On each round, a captain
would choose the most capable (or, toward the
end, the least inept) player from the pool of re-
maining candidates, until everyone present had
been assigned to one side or the other. The aim
of this ritual was to produce two evenly
matched teams and, along the way, to remind
each of us of our precise ranking in the neigh-
borhood pecking order. It usually worked.

None of us in those days—not the hopefuls
waiting for our name to be called, and certainly
not the two thick-necked team leaders—recog-
nized that our scheme for choosing sides imple-
ments a greedy heuristic for the balanced num-
ber partitioning problem. And we had no idea
that this problem is NP-complete—that finding
the optimum team rosters is certifiably hard. We
just wanted to get on with the game.

And therein lies a paradox: If computer scien-
tists find the partitioning problem so intractable,
how come children the world over solve it every
day? Are the kids that much smarter? Quite pos-
sibly they are. On the other hand, the success of
playground algorithms for partitioning might be
a clue that the task is not always as hard as that
forbidding term “NP-complete” tends to suggest.
As a matter of fact, finding a hard instance of this
famously hard problem can be a hard problem—
unless you know where to look. Some recent re-
sults, which make use of tools borrowed from
physics and mathematics as well as computer
science, have now shown exactly where the hard
problems hide. 

The organizers of sandlot ball games are not
the only ones with an interest in efficient parti-
tioning. Closely related problems arise in many
other resource-allocation tasks. For example,
scheduling a series of jobs on a dual-processor
computer is a partitioning problem: Sorting the

jobs into two sets with equal running time will
balance the load on the processors. Another ex-
ample is apportioning the miscellaneous assets
of an estate between two heirs.

So What’s the Problem?
Here is a slightly more formal statement of the
partitioning problem. You are given a set of n pos-
itive integers, and you are asked to separate them
into two subsets; you may put as many or as few
numbers as you please in each of the subsets, but
you must make the sums of the subsets as nearly
equal as possible. Ideally, the two sums would be
exactly the same, but this is feasible only if the
sum of the entire set is even; in the event of an
odd total, the best you can possibly do is to
choose two subsets that differ by 1. Accordingly, a
perfect partition is defined as any arrangement
for which the “discrepancy”—the absolute value
of the subset difference—is no greater than 1.

Try a small example. Here are 10 numbers—
enough for two basketball teams—selected at ran-
dom from the range between 1 and 10:

2  10 3 8  5  7  9  5  3  2

Can you find a perfect partition? In this instance it
so happens there are 23 ways to divvy up the
numbers into two groups with exactly equal sums
(or 46 ways if you count mirror images as distinct
partitions). Almost any reasonable method will
converge on one of these perfect solutions. This is
the answer I stumbled onto first:

( 2  5  3  10 7) ( 2  5  3  9  8 )

Both subsets sum to 27.
This example is in no way unusual. As a matter

of fact, among all sets of 10 integers between 1
and 10, more than 99 percent have at least one
perfect partition. (To be precise, of the 10 billion
such sets, 9,989,770,790 can be perfectly parti-
tioned. I know because I counted them—and it
wasn’t easy.)

Maybe larger sets are more challenging? With a
list of 1,000 numbers between 1 and 10, working
the problem by pencil-and-paper methods gets
tedious, but a simple computer program makes
quick work of it. A variation on the two-bullies al-
gorithm does just fine. First sort the list of num-
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bers according to magnitude, then go through
them in descending order, assigning each number
to whichever subset currently has the smaller
sum. This is called a greedy algorithm, because it
takes the largest numbers first.

The greedy algorithm almost always finds a
perfect partition for a list of a thousand random
numbers no greater than 10. Indeed, the proce-
dure works equally well on a set of 10,000 or
100,000 or a million numbers in the same range.
The explanation of this success is not that the al-
gorithm is a marvel of ingenuity. Lots of other
methods do as well or better. 

A particularly clever algorithm was described
in 1982 by Narendra Karmarkar and Richard M.
Karp, who were then both at the University of
California, Berkeley. It is a “differencing”
method: At each stage you choose two numbers
from the set to be partitioned and replace them
by the absolute value of their difference. This op-
eration is equivalent to deciding that the two se-
lected integers will go into different subsets,
without making an immediate commitment
about which numbers go where. The process
continues until only one number remains in the
list; this final value is the discrepancy of the par-
tition. You can reconstruct the partition itself by
working backward through the series of deci-
sions. In the search for perfect partitions, the Kar-
markar-Karp procedure succeeds even more of-
ten than the greedy algorithm.

At this point you may be ready to dismiss par-
titioning as just a wimpy problem, unworthy of
the designation NP-complete. But try one more
example. Here is another list of 10 random num-
bers, chosen not from the range 1 to 10 but rather
from the range between 1 and 210, or 1,024:

771  121  281  854  885  734  486  1003  83  62

This set does have a perfect partition, but there is
just one, and finding it takes a little persistence.

The greedy algorithm does not succeed; it gets
stuck on a partition with a discrepancy of 32. Kar-
markar-Karp does slightly better, reducing the
discrepancy to 26. But the only sure way to find
the one perfect partition is to check all possible
partitions, and there are 1,024 of them.

If this challenge is still not daunting enough,
try 100 numbers ranging up to 2100, or 1,000 num-
bers up to 21000. Unless you get very lucky, decid-
ing whether such a set has a perfect partition will
keep you busy for quite a few lifetimes.

Where the Hard Problems Are
To make sense of what’s going on here, it’s neces-
sary first to be clear about what it means for a
problem to be hard. Computer science has reached
a rough consensus on this issue: Easy problems
can be solved in “polynomial time,” whereas
hard problems require “exponential time.” If you
have a problem of size x, and you know an algo-
rithm that can solve it in x steps or x2 steps or even
x50 steps, then the problem is officially easy; all of
these expressions are polynomials in x. But if your
best algorithm needs 2x steps or xx steps, you’re in
trouble. Such exponential functions grow faster
than any polynomial for large enough values of x.

The easy, polynomial-time problems are said to
lie in class P; hard problems are all those not in P.
The notorious class NP consists of some rather
special hard problems. As far as anyone knows,
solving these problems requires exponential time.
On the other hand, if you are given a proposed
solution, you can check its correctness in polyno-
mial time. (NP stands for “nondeterministic poly-
nomial”—although admittedly that’s not much
help in understanding the concept.)

Where does number partitioning fit into this
taxonomy? Both the greedy algorithm and Kar-
markar-Karp have polynomial running time; they
can partition a set of n numbers in less than n2

steps. For purposes of classification, however,
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Figure 1. One perfect partition hides in a dense forest of very imperfect ones. Partitions are ways of separating a set of numbers into two subsets;
a partition is perfect if the subsets have the same sum. Here the bars represent the discrepancy—the absolute value of the subset difference—of
the 256 ways of partitioning a certain set of nine integers. (There are another 256 partitions, but they are just the mirror images of these, exchang-
ing the two subsets.) The set chosen for this example is (484 114 205 288 506 503 201 127 410); the lone perfect partition, marked by a red asterisk,
divides the numbers into the subsets (410 503 506) and (127 201 288 205 114 484), which both add up to exactly 1,419.
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these algorithms simply don’t count, because
they’re not guaranteed to find the right answer.
The hierarchy of problem difficulty is based on a
worst-case analysis, which disqualifies an algo-
rithm if it fails on even one problem instance. The
only known method that does pass the worst-case
test is the brute-force approach of examining
every possible partition. But this is an exponen-
tial-time algorithm: Each integer in the set can be
assigned to either of the two subsets, so that there
are 2n partitions to be considered.

Partitioning is a classic NP problem. If some-
one hands you a list of n numbers and asks,
“Does this set have a perfect partition?” you can
always find the answer by exhaustive search, but
this can take an exponential amount of time. If
you are given a proposed perfect partition, how-
ever, you can easily verify its correctness in poly-
nomial time. All you need to do is add up the
two subsets and compare the sums, which takes
time proportional to n.

Indeed, partitioning is not just an ordinary
member of the class NP; it is one of the elite NP
problems designated NP-complete. What this
means is that if someone discovered a polynomi-
al-time algorithm for partitioning, it could be
adapted to solve all NP problems in polynomial
time. Each NP-complete problem is a skeleton
key to the entire class NP.

Given these sterling credentials as a hard prob-
lem, it’s all the more perplexing that partitioning
often yields so readily to simple and unsophisti-
cated methods such as the greedy algorithm.
Does this problem have teeth, or is it just a sheep
in wolf’s clothing? 

Boiling and Freezing Numbers
An answer to this question has emerged in the
past few years from a campaign of research that
spans at least three disciplines—physics, mathe-
matics and computer science. It turns out that the
spectrum of partitioning problems has both hard
and easy regions, with a sharp boundary between
them. On crossing that frontier, the problem un-
dergoes a phase transition, analogous to the boil-
ing or freezing of water.

The standard classification of computing prob-
lems as P or NP and so on assumes that difficulty
increases as a function of problem size. In the case
of number partitioning, two factors determine the
size of a problem instance: how many numbers
are in the set, and how big they are. Specifically,
the size of an instance is the number of bits need-
ed to represent it, and this depends both on the
number of integers, n, and on the number of bits,
m, in a typical integer. Thus a set of 100 integers in
a range near 2100 has n = 100 and m = 100 and a
problem size of 10,000 bits.

Given this measure of size, one might expect
that partitioning problems would get harder as
the product of n and m increases. This conclusion
is not entirely wrong; algorithms do have to labor
longer over bigger problems, if only to read the

input. Yet, surprisingly, the product nm is not the
best predictor of difficulty in number partitioning.
Instead it’s the ratio m/n.

Some simple reasoning about extreme cases
takes the mystery out of this assertion. Suppose
the ratio of m to n is very small, say with m = 1
and n = 1,000. The task, then, is to partition a set
of 1,000 numbers, each of which can be represent-
ed by a single bit. This is trivially easy: A one-bit
positive integer must be equal to 1, and so the
input to the problem is a list of a thousand 1s.
Finding a perfect partition is just a matter of
counting. At the opposite extreme, consider the
case of m = 1,000 and n = 2 (the smallest n that
makes sense in a partitioning problem). Here the
separation into subsets is easy—how many ways
can you partition a set of two items?—but the
likelihood of a perfect partition is extremely low.
It’s just the probability that two randomly select-
ed 1,000-bit numbers will be equal.

Now it becomes clear why in my baby-boom
neighborhood we so easily formed ourselves into
well-matched teams. Among the dozen or more
kids who would gather for a game, athletic abili-
ties may have differed by a factor of 10, but sure-
ly not by a factor of 1,000. The parameter m is
the base-2 logarithm of this range of talents, and
so it was no greater than 3 or 4. Thus m/n was
rather small—less than 1—and we had many ac-
ceptable solutions to choose from. Perhaps if we
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Figure 2. Greedy algorithm is one of the simplest approximate meth-
ods of partitioning. The rule is always to take the largest number
remaining to be assigned, and put it in the subset with the smaller
sum. Here red balls indicate the number being moved at each stage.
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Figure 3. Karmarkar-Karp algorithm operates in two phases. First,
reading down the lefthand side, pairs of numbers are replaced by
their difference, effectively deciding they will go into different sub-
sets. In the second phase, reading up the righthand side, the partition
is constructed from the sequence of differencing decisions. Here the 0
at the bottom of the table is known to derive from the difference of
two 2s, which can therefore be inserted, one in each subset. One of the
2s arose as the difference between a 6 and a 4, so those numbers can
also be written down, and so on. In the case shown the algorithm
finds a perfect partition, but it is not guaranteed always to work.



had had a young Michael Jordan or Mia Hamm
in the neighborhood, I would take a different
view of the number-partitioning problem today.

Antimagnetic Numbers
The ratio m/n divides the space of partitioning
problems into two regions. Somewhere between
them—between the fertile valley where solutions
bloom everywhere and the stark desert where
even one perfect partition is too much to ex-
pect—there must be a crossover region. There lies
the phase transition.

The concept of a phase transition comes from
physics, but it also has a long history of applica-
tions to mathematical objects. Forty years ago
Paul Erdős and Alfred Rényi described phase tran-
sitions in the growth of random graphs (collections
of vertices and connecting edges). By the 1980s,
phase transitions had been observed in many com-
binatorial processes. The most thoroughly ex-
plored example is an NP-complete problem called
satisfiability. A 1991 article by Peter Cheeseman,
Bob Kanefsky and William M. Taylor, titled
“Where the Really Hard Problems Are,” conjec-
tured that all NP problems have a phase transi-
tion and suggested that this is what distinguishes
them from problems in P.

Meanwhile, in another paper with a provoca-
tive title (“The Use and Abuse of Statistical Me-
chanics in Computational Complexity”), Yaotian
Fu of Washington University in St. Louis argued
that number partitioning is an example of an NP
problem without a phase transition. This assertion
was disputed by Ian P. Gent of the University of
Strathclyde and Toby Walsh of the University of
York, who presented strong computational evi-

dence for the existence of a phase transition. Their
measurements suggested that the critical value of
the m/n ratio, where easy problems give way to
hard ones, is about 0.96.

Stephan Mertens, of Otto von Guericke Uni-
versität in Magdeburg, Germany, has now given a
thoroughgoing analysis of number partitioning
from a physicist’s point of view. His survey paper
(which has been my primary source in writing
this article) appears in a special issue of Theoretical
Computer Science devoted to phase transitions in
combinatorial problems.

As a means of understanding the phase transi-
tion, Mertens sets up a correspondence between
the number-partitioning problem and a model of
a physical system. To see how this works, it helps
to think of the partitioning process in a new con-
text. Instead of unzipping a list of numbers into
two separate lists, keep all the numbers in one
place and multiply some of them by –1. The idea
is to negate just the right selection of numbers so
that the entire set sums to 0. Now comes the leap
from mathematics to physics: The collection of
positive and negative numbers is analogous to an
array of atoms in a magnetic material, with the
plus and minus signs representing up and down
spins. Specifically, the system resembles an infi-
nite-range antiferromagnet, where every atom
can feel the influence of every other atom, and
where the favored configuration has spins point-
ing in opposite directions.

This strategy for studying partitioning may
seem slightly perverse. It takes a simply stated
problem in combinatorics and turns it into a
messy and rather obscure system in statistical me-
chanics. Why bother? The reason is that physics
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offers some powerful tools for predicting the be-
havior of such a system. In particular, the inter-
play of energy and entropy governs how the col-
lection of spins can be expected to evolve toward a
state of stable equilibrium. The energy in question
comes from the interaction between atomic spins
(or between positive and negative numbers); be-
cause the system is an antiferromagnet, the energy
is minimized when the spin vectors are oppositely
oriented (or when the subsets sum to zero). The
entropy measures the number of ways of achiev-
ing the minimum-energy state; a system with a
unique ground state (or just one perfect partition)
has zero entropy. When there are many equiva-
lent ways of minimizing the energy (or partition-
ing a set perfectly), the entropy is high.

The ratio m/n controls the state of this system.
When m is much greater than n, the spins almost
always have just one configuration of lowest en-
ergy. At the other pole, when m is much smaller
than n, there are a multitude of zero-energy states,
and the system can land in any one of them.
Mertens showed that the transition between the
two phases comes at  m/n = 1, at least in the limit
of very large n. And he derived corrections for fi-
nite n that may explain why Gent and Walsh
measured a slightly different transition point.

Finally, Mertens showed just how hard the
hard phase is. Searching for the best partition in
this region is equivalent to searching a randomly
ordered list of random numbers for the smallest
element of the list. Only an exhaustive traverse
of the entire list can guarantee an exact result.
What’s worse, there are no really good heuristic
methods; no shortcuts are inherently superior to
blind, random sampling.

Yet this is not to say that heuristics for parti-
tioning are totally worthless. On the contrary, the
phase-transition model helps explain how the
Karmarkar-Karp algorithm works. The differenc-
ing operation reduces the range of the numbers
and so diminishes m/n, sliding the problem to-
ward the easy phase. The algorithm can’t be
counted on to find the very best partition, but it’s
an effective way of avoiding the worst ones.

Back to Mathematics
The work of Mertens has answered most of the
major questions about number partitioning, and
yet it’s not quite the end of the story. The methods
of statistical mechanics were developed as tools
for describing systems made up of vast numbers
of component parts, such as the atoms of a macro-
scopic specimen of matter. When applied to num-
ber partitioning, the methods are strictly valid
only for very large sets, where m and n both go to
infinity (while maintaining a fixed ratio). Those
who need to solve practical partitioning problems
are generally interested in somewhat smaller val-
ues of m and n.

Mertens’s results have another limitation as
well. In calculating the distribution of optimal so-
lutions, he had to adopt a simplifying approxima-

tion at one crucial step, assuming that certain en-
ergies in the spin system are random. The true dis-
tribution of those energies is harder to deduce, but
the task has been undertaken by Christian Borgs
and Jennifer T. Chayes of Microsoft Research and
Boris Pittel of Ohio State University. They have re-
claimed the problem from the realm of physics
and brought it back to mathematics. Their paper
giving detailed proofs runs to nearly 40 pages.

To their surprise, Borgs, Chayes and Pittel dis-
covered that Mertens’s random-energy approxi-
mation actually yields exact results in the limiting
case of infinite m and n. Under these conditions
the phase transition is perfectly sharp. Anywhere
below the critical ratio m/n = 1, the probability of
a perfect partition is 1; above this threshold the
probability is 0. Borgs, Chayes and Pittel also give
a precise account of how the phase transition soft-
ens and broadens for smaller problems. When n is
finite, the probability of a perfect partition varies
smoothly between 0 or 1, with a “window” of fi-
nite width surrounding the critical ratio.

If my friends and I back on the ball field had
known all this, would we have played better
games? Probably not, but in retrospect I take sat-
isfaction in the thought that our ritual for choos-
ing teams was algorithmically well-founded.
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