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R
andomness is not something we usually
look upon as a vital natural resource, to be
carefully conserved lest our grandchildren

run short of it. On the contrary, as a close relative
of chaos, randomness seems to be all too abun-
dant and everpresent. Everyone has a closet or a
file drawer that offers an inexhaustible supply of
disorder. Entropy—another cousin of random-
ness—even has a law of nature saying it can only
increase. And, anyway, even if we were somehow
to use up all the world’s randomness, who would
lament the loss? Fretting about a dearth of ran-
domness seems like worrying that humanity
might use up its last reserves of ignorance.

Nevertheless, there is a case to be made for the
proposition that high-quality randomness is a
valuable commodity. Many events and processes
in the modern world depend on a steady supply
of the stuff. Furthermore, we don’t know how to
manufacture randomness; we can only mine it
from those regions of the universe that have the
richest deposits, or else farm it from seeds gath-
ered in the natural world. So, even if we have not
yet reached the point of clear-cutting the last
proud acre of old-growth randomness, maybe
it’s not too early to consider the question of long-
term supply.

The Randomness Industry
To appreciate the value of randomness, just
imagine a world without it. What would replace
the referee’s coin flip at the start of a football
game? How would a political poll-taker select an
unbiased sample of the electorate? Then of
course there’s the Las Vegas problem. Slot ma-
chines devour even more randomness than they
do silver dollars. Inside each machine an elec-
tronic device spews out random numbers 24
hours a day, whether or not anyone is playing.

There’s also a Monte Carlo problem. I speak not
of the Mediterranean principality but of the simu-
lation technique named for that place. The Monte
Carlo method got its start in the 1940s at Los
Alamos, where physicists were struggling to pre-

dict the fate of neutrons moving through urani-
um and other materials. The Monte Carlo ap-
proach to this problem is to trace thousands of
simulated neutron paths. Whenever a neutron
strikes a nucleus, a random number determines
the outcome of the event—reflection, absorption
or fission. Today the Monte Carlo method is a ma-
jor industry not only in physics but also in eco-
nomics and some areas of the life sciences, not to
mention hundreds of rotisserie baseball leagues.

Many computer networks would be dead-
locked without access to randomness. When two
nodes on a network try to speak at once, polite-
ness is not enough to break the impasse. Each
computer might be programmed to wait a cer-
tain interval and then try again, but if all com-
puters followed the same rule, they’d keep
knocking heads repeatedly until the lights went
out. The Ethernet protocol solves this problem
by deliberately not giving a fixed rule. Instead,
each machine picks a random number between 1
and n, then waits n units of time before retrans-
mitting; the probability of a second collision is
reduced to 1/n.

Computer science has a whole technology of
“randomized algorithms.” On first acquaintance
the very idea of a randomized algorithm may
seem slightly peculiar: An algorithm is supposed
to be a deterministic procedure—one that allows
no scope for arbitrary choice or caprice—so how
can it be randomized? The contradiction is re-
solved by making the randomness a resource ex-
ternal to the algorithm itself. Where an ordinary
algorithm is a black box receiving a stream of bits
as input and producing another stream of bits as
output, a randomized algorithm has a second in-
put stream made up of random bits.

Sometimes the advantage of a randomized al-
gorithm is clearest when you take an adversarial
view of the world. Randomness is what you need
to foil an adversary who wants to guess your in-
tentions or predict your behavior. Suppose you
are writing a program to search a list of items for
some specified target. Given any predetermined
search strategy—left to right, right to left, middle
outward—an adversary can arrange the list so
that the target item is always in the last place you
look. But a randomized version of the procedure
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can’t be outguessed so easily; the adversary can’t
know where to hide the target because the pro-
gram doesn’t decide where to search until it be-
gins reading random bits. In spite of the adver-
sary’s best efforts, you can expect to find the
target after sifting through half the list.

Still another field that can’t do without ran-
domness is cryptography, where calculated dis-
order is the secret to secrecy. The strongest of all
cipher systems require a random key as long as
the message that’s being sent. The late Claude E.
Shannon proved that such a cipher is absolutely
secure. That is, if the key is truly random, and if it
is used only once, an eavesdropper who inter-
cepts an encrypted message can learn nothing
about the  original text, no matter how much
time and effort and computational horsepower
are brought to bear on the task. Shannon also
showed that no cipher with a key shorter than
the message can offer the same degree of security.
But a long key is a considerable inconvenience—
hard to generate, hard to distribute.

Much of the emphasis in recent cryptological
research has been on ways to get by with less ran-
domness, but a recent proposal takes a step in the
other direction. The idea is to drown an adver-
sary in a deluge of random bits. The first version
of the scheme was put forward in 1992 by Ueli M.
Maurer of the Swiss Federal Institute of Technol-
ogy; more recent refinements (not yet published)
have come from Michael O. Rabin of Harvard
University and his student Yan Zong Ding. 

The heart of the plan is to set up a public bea-
con—perhaps a satellite—continually broadcast-

ing random bits at a rate so high that no one could
store more than a small fraction of them. Parties
who want to communicate in privacy share a rela-
tively short key that they both use to select a se-
quence of random bits from the public broadcast;
the selected bits serve as an enciphering key for
their messages. An eavesdropper cannot decrypt
an intercepted message without a record of the
random broadcasts, and cannot keep such a
record because it would be too voluminous. 

How much randomness would the beacon
have to broadcast? Rabin and Ding mention a
rate of 50 gigabits per second, which would fill
up some 800,000 CD-ROMs per day.

Supply-Side Issues
Whatever the purpose of randomness, and how-
ever light or heavy the demand, it seems like pro-
ducing the stuff ought to be a cinch. At the very
least it should be easier to make random bits than
non-random ones, in the same way that it’s easi-
er to make a mess than it is to tidy up. If comput-
ers can perform long and intricate calculations
where a single error could spoil the entire result,
then surely they should be able to churn out
some patternless digital junk. But they can’t.
There is no computer program for randomness.

Of course most computer programming lan-
guages will cheerfully offer to generate random
numbers for you. In Lisp the expression (random
100) produces an integer in the range between 0
and 99, with each of the 100 possible values hav-
ing equal probability. But these are pseudo-ran-
dom numbers: They “look” random, but under
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Figure 1. Eight specimens of randomness come from very different sources but yield similar patterns. The 400 colored dots in each panel represent
1,200 random bits taken three at a time. The sources of randomness are, from left to right and top to bottom: a pseudo-random generator, the 1955
Rand Corporation table, the HG202 random-bit generator (faust.irb.hr/~stipy/), the Pennsylvania Daily Number lottery (www.palottery.com), 1,200
coin flips, rapid pounding on a keyboard, an electrocardiogram of atrial fibrillation (www.physionet.org), and six Lava Lites (lavarand.sgi.com).



the surface there is nothing unpredictable about
them. Each number in the series depends on
those that went before. You may not immediately
perceive the rule in a series like 58, 23, 0, 79, 48...,
but it’s just as deterministic as 1, 2, 3, 4.... 

The only source of true randomness in a se-
quence of pseudo-random numbers is a “seed”
value that gets the series started. If you supply
identical seeds, you get identical sequences; dif-
ferent seeds produce different numbers. The cru-
cial role of the seed was made clear in the 1980s
by Manuel Blum, now of Carnegie Mellon Uni-
versity. He pointed out that a pseudo-random
generator does not actually generate any ran-
domness; it stretches or dilutes whatever ran-
domness is in the seed, spreading it out over a
longer series of numbers like a drop of pigment
mixed into a gallon of paint.

For most purposes, pseudo-random numbers
serve perfectly well—often better than true ran-
dom numbers. Almost all Monte Carlo work is
based on them. Even for some cryptographic ap-
plications—where standards are higher and un-
predictability is everything—Blum and others

have invented pseudo-random generators that
meet most needs. Nevertheless, true randomness
is still in demand, if only to supply seeds for
pseudo-random generators. And if true random-
ness cannot be created in any mathematical op-
eration, then it will have to come from some
physical process.

Extracting randomness from the material
world also sounds like an easy enough job. Un-
predictable events are all around us: the stock
market tomorrow, the weather next week, the or-
bital position of Pluto in 50 million years. Yet
finding events that are totally patternless turns
out to be quite difficult. The stories of the pio-
neering seekers after randomness are chronicles
of travail and disappointment.

Consider the experience of the British bio-
metrician W. F. R. Weldon and his wife, the for-
mer Florence Tebb. Evidently they spent many
an evening rolling dice together—not for money
or sport but for science, collecting data for a class-
room demonstration of the laws of probability.
But in 1900 Karl Pearson analyzed 26,306 of the
Weldons’ throws and found deviations from
those laws; there was an excess of fives and sixes.

In 1901 Lord Kelvin tried to carry out what we
would now call a Monte Carlo experiment, but he
ran into trouble generating random numbers. In a
footnote he wrote: “I had tried numbered billets
(small squares of paper) drawn from a bowl, but
found this very unsatisfactory. The best mixing we
could make in the bowl seemed to be quite insuf-
ficient to secure equal chances for all the billets.”

In 1925 L. H. C. Tippett had the same problem.
Trying to make a random selection from a thou-
sand cards in a bag, “it was concluded that the
mixing between each draw had not been suffi-
cient, and there was a tendency for neighbouring
draws to be alike.” Tippett devised a more elabo-
rate randomizing procedure, and two years later
he published a table of 41,600 random digits. But
in 1938 G. Udny Yule submitted Tippett’s num-
bers to statistical scrutiny and reported evidence
of “patchiness.”

Ronald A. Fisher and Frank Yates compiled an-
other table of 15,000 random digits, using two
decks of playing cards to select numbers from a
large table of logarithms. When they were done,
they discovered an excess of sixes, and so they re-
placed 50 of them with other digits “selected at
random.” (Two of their statistical colleagues, Mau-
rice G. Kendall and Bernard Babington Smith,
comment mildly: “A procedure of this kind may
cause others, as it did us, some misgiving.”)

The ultimate random-number table arrived
with a thump in 1955, when the Rand Corpora-
tion published a 600-page tome titled A Million
Random Digits with 100,000 Normal Deviates. The
Rand randomizers used “an electronic roulette
wheel” that selected one digit per second. De-
spite the care taken in the construction of this de-
vice, “Production from the original machine
showed statistically significant biases, and the
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Figure 2. Thermal noise in electronic circuits, which is usually a nui-
sance to be suppressed, becomes a resource to be exploited in random
number generators. In one scheme the noise signal is measured at reg-
ular intervals defined by a sequence of clock pulses; if the voltage at the
instant of a pulse is positive, a 1 is emitted, and otherwise a 0.
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Figure 3. Radioactive decay offers another source of randomness. When
a decay event is detected, the digit emitted depends on the polarity of a
square-wave signal at that instant.



engineers had to make several modifications and
refinements of the circuits.” Even after this tune-
up, the results of the month-long run were still
unsatisfactory; Rand had to remix and shuffle the
numbers before the tables passed statistical tests.

Today there is little interest in publishing ta-
bles of numbers, but machines for generating
randomness are still being built. Many of them
find their source of disorder in the thermal fluc-
tuations of electrons wandering through a resis-
tor or a semiconductor junction. This noisy signal
is the hiss or whoosh you hear when you turn up
an amplifier’s volume control. Traced by an os-
cilloscope, it certainly looks random and unpre-
dictable, but converting it into a stream of ran-
dom bits or numbers is not straightforward.

The obvious scheme for digitizing noise is to
measure the signal at certain instants and emit a 1
if the voltage is positive or a 0 if it is negative. But
it’s hard to build a measuring circuit with a precise
and consistent threshold between positive and
negative voltage. As components age, the thresh-
old drifts, causing a bias in the balance between 1s
and 0s. There are circuits and computational tricks
to correct this problem, but the need for such fixes
suggests just how messy it can be getting a physi-
cal device to conform to a mathematical ideal—
even when the ideal is that of pure messiness.

Another popular source of randomness is the
radioactive decay of atomic nuclei, a quantum
phenomenon that seems to be near the ultimate in
unpredictability. A simple random-number gen-
erator based on this effect might work as follows.
A Geiger-Müller tube detects a decay event, while
in the background a free-running oscillator gener-
ates a high-frequency square-wave signal—a train
of positive and negative pulses. At the instant of a
nuclear decay, the square wave is sampled, and a
binary 1 or 0 is output according to the polarity of
the pulse at that moment. Again there are engi-
neering pitfalls. For example, the circuitry’s “dead
time” after each event may block detection of
closely spaced decays. And if the positive and
negative pulses in the square wave differ in length
even slightly, the output will be biased.

Hardware random-number generators are
available as off-the-shelf components you can
plug into a port of your computer. Most of them
rely on thermal electronic noise. If your computer
has one of the latest Intel Pentium processors, you
don’t need to plug in a peripheral: The random-
number generator is built into the CPU chip.
There are also several Web sites that serve up free
samples of randomness. George Marsaglia of

Florida State University has some 4.8 billion care-
fully tested random bits available to the public.
And there are less-conventional sources of ran-
domness, most famously “lavarand,” at Silicon
Graphics, where random bits are extracted from
images of the erupting blobs inside six Lava Lite
lamps. (Lately the lamps have gone out, although
samples remain available at lavarand.sgi.com.)

The Empyrean and the Empirical
As a practical matter, reserves of randomness cer-
tainly appear adequate to meet current needs.
Consumers  of randomness need not fear rolling
blackouts this summer. But what of the future?
The great beacon of randomness proposed by
Rabin and Ding would require technology that
remains to be demonstrated. They envision
broadcasting 50 billion random bits per second,
but randomness generators today typically run at
speeds closer to 50 kilobits per second. 

The prospect of scaling up by a factor of a mil-
lion demands attention to quality as well as quan-
tity. For most commodities, quantity and quality
have an inverse relation. A laboratory buying mil-
ligrams of a reagent may demand 99.9 percent
purity, whereas a factory using carloads can toler-
ate a lower standard. In the case of randomness,
the trade-off is turned upside down. If you need
just a few random numbers, any source will do;
it’s hard to spot biases in a handful of bits. But a
Monte Carlo experiment burning up billions of
random numbers is exquisitely sensitive to the
faintest trends and patterns. The more random-
ness you consume, the better it has to be.

Why is it hard to make randomness? The fact
that maintaining perfect order is difficult surpris-
es no one; but it comes as something of a revela-
tion that perfect disorder is also beyond our reach.
As a matter of fact, perfect disorder is the more
troubling concept—it is hard not only to attain
but also to define or even to imagine.

The prevailing definition of randomness was
formulated in the 1960s by Gregory J. Chaitin of
IBM and by the Russian mathematician A. N.
Kolmogorov. The definition says that a sequence
of bits is random if the shortest computer pro-
gram for generating the sequence is at least as
long as the sequence itself. The binary string
101010101010 is not random because there is an
easy rule for creating it, whereas 111010001011 is
unlikely to have a generating program much
shorter than “print 111010001011.” It turns out
that almost all strings of bits are random by this
criterion—they have no concise description—and
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Figure 4. Biased stream of random bits is rebalanced through a trick invented by John von Neumann. The bits are taken
two at a time. All 00 and 11 pairs are discarded, then each 01 is replaced by 0 and each 10 by 1. The bias is thereby elimi-
nated, but at least three-fourths of the bits are thrown away. Repeating the procedure can correct some subtler flaws.



yet no one has ever exhibited a single string that
is certified to be random. The reason is simple:
The first string certified to have no concise de-
scription would thereby acquire a concise de-
scription—namely that it’s the first such string.

The Chaitin-Kolmogorov definition is not the
only aspect of randomness verging on the para-
doxical or the ironic. Here is another example:
True random numbers, captured in the wild, are
clearly superior to those bred in captivity by
pseudo-random generators—or at least that’s
what the theory of randomness implies. But
Marsaglia has run the output of various hardware
and software generators through a series of statis-
tical tests. The best of the pseudo-random genera-
tors earned excellent grades, but three hardware
devices flunked. In other words, the fakes look
more convincingly random than the real thing.

To me the strangest aspect of randomness is
its role as a link between the world of mathemat-
ical abstraction and the universe of ponderable
matter and energy. The fact that randomness re-
quires a physical rather than a mathematical
source is noted by almost everyone who writes
on the subject, and yet the oddity of this situation
is not much remarked.

Mathematics and theoretical computer science
inhabit a realm of idealized and immaterial ob-
jects: points and lines, sets, numbers, algorithms,
Turing machines. For the most part, this world is
self-contained; anything you need in it, you can
make in it. If a calculation calls for the millionth
prime number or the cube root of 2, you can set
the computational machinery in motion without
ever leaving the precincts of mathland. The one
exception is randomness. When a calculation
asks for a random number, no mathematical ap-
paratus can supply it. There is no alternative but
to reach outside the mathematical empyrean into
the grubby world of noisy circuits and decaying
nuclei. What a strange maneuver! If some purely
mathematical statement—say the formula for
solving a quadratic equation—depended on the
mass of the earth or the diameter of the hydrogen
atom, we would find this disturbing or absurd.
Importing randomness into mathematics crosses
the same boundary.

Of course there is another point of view: If we
choose to look upon mathematics as a science
limited to deterministic operations, it’s hardly a
surprise that absence-of-determinism can’t be
found there. Perhaps what is really extraordinary
is not that randomness lies outside mathematics
but that it exists anywhere at all.

Or does it? The savants of the 18th century
didn’t think so. In their clockwork universe the
chain of cause and effect was never broken. Events
that appeared to be random were merely too com-
plicated to submit to a full analysis. If we failed to
predict the exact motion of an object—a roving
comet, a spinning coin—the fault lay not in the
unruliness of the movement but in our ignorance
of the laws of physics or the initial conditions.

The issue is seen differently today. Quantum
mechanics has cast a deep shadow over causality,
at least in microscopic domains. And “determin-
istic chaos” has added its own penumbra, ob-
scuring the details of events that might be pre-
dicted in principle, but only if we could gather an
unbounded amount of information about them.
To a modern sensibility, randomness reflects not
just the limits of human knowledge but some in-
herent property of the world we live in. Never-
theless, it seems fair to say that most of what goes
on in our neighborhood of the universe is mainly
deterministic. Coins spinning in the air and dice
tumbling on a felt table are not conspicuously
quantum-mechanical or chaotic systems. We
choose to describe their behavior through the
laws of probability only as a matter of conve-
nience; there’s no question the laws of angular
momentum are at work behind the scenes. If
there is any genuine randomness to be found in
such events, it is the merest sliver of quantum
uncertainty. Perhaps this helps to explain why
digging for randomness in the flinty soil of
physics is such hard work.
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