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P
eople have been recruiting other species to
serve human needs for at least 10,000 years.
We have turned plants into crops and ani-

mals into beasts of burden; even microorganisms
have been pressed into service as fermenters. Yet
until now no nonhuman species has ever been
harnessed to do intellectual work on our behalf.
That could change. Biologists and computer sci-
entists have designed digital logic gates based on
the metabolism of living cells, with the aim of
eventually building a computer out of colonies of
Escherichia coli or some other single-celled organ-
ism. But perhaps build is the wrong verb here;
the plan is to grow or breed or culture a computer.

The idea of a bacterial computer is not in itself
quite so outlandish as it may seem on first ac-
quaintance. In principle, computing machines
can be made out of almost anything, from bil-
liard balls to Tinker Toys, and there is no reason
that lipid sacs of proteins and nucleic acids
should not also qualify as computer building
blocks. From the lofty and austere perspective of
computer science, an agar plate coated with mi-
croscopic bacteria is not much different from a
silicon wafer etched with microscopic transistors.
If the components can store and manipulate in-
formation in a few basic ways, they can compute.

So much for the lofty and austere view of com-
puter science; but there is also computer engi-
neering to be considered, and the questions asked
in that discipline are more down to earth. Can liv-
ing logic gates be strung together in networks
large enough to perform an interesting computa-
tion? Can they run fast enough to complete a task
within a human lifetime? Can they be made reli-
able enough to produce consistent and correct an-
swers? Can biocomputer engineers cope with all
the distinctive failure modes of living organ-
isms—disease, predation, parasitism, senescence,
death? (In this context the threat of a computer
virus is more than a metaphor!) It’s fair to say that
practical applications of biological computers are
a long way off. And yet skeptics might keep in
mind that the historical record of domestications
is a vast catalogue of unlikely-seeming successes.

The Logic of Life
A digital technology usually starts with Boolean
logic gates—devices that operate on signals with
two possible values, such as true and false, 1 and 0.
An AND gate has two or more inputs and one out-
put; the output is true only if all the inputs are
true. An OR gate is similar except that the output is
true if any of the inputs are true. The simplest of
all gates is the NOT gate, which takes a single in-
put signal and produces the opposite value as
output: true becomes false, and false becomes true.

In electronic circuits, a NOT gate can be made
from a single transistor, wired so that a high volt-
age at the input produces a low voltage at the out-
put, and vice versa. When the gate switches be-
tween its two states, it does so abruptly, like a
snap-action light switch. It is this sudden, nonlin-
ear response that gives digital devices their resis-
tance to noise and error. Because a gate is either
fully on or totally off, a signal can pass through a
long chain of gates without degradation.

Are there any biochemical equivalents to tran-
sistor gates? As a matter of fact, yes: There are
hundreds of candidates. Perhaps the most inter-
esting among them are the mechanisms of genet-
ic control, which switch genes on and off.

The archetypal example of genetic regulation
in bacteria is the lac operon of E. coli, first studied
in the 1950s by Jacques Monod and François Ja-
cob. The operon is a set of genes and regulatory
sequences involved in the metabolism of certain
complex sugars, including lactose. The bacteri-
um’s preferred nutrient is the simpler sugar glu-
cose, but when glucose is scarce, the cell can
make do by living on lactose. The enzymes for
digesting lactose are manufactured in quantity
only when they are needed—specifically when
lactose is present and glucose is absent.

As in the expression of any genes, synthesis of
the lac enzymes is a two-stage process. First the
DNA is transcribed into messenger RNA by the
enzyme RNA polymerase; then the messenger
RNA is translated into protein by ribosomes. The
process is controlled at the transcription stage.
Before the genes can be transcribed, RNA poly-
merase must bind to the DNA at a special site
called a promoter, which is just “upstream” of
the genes; then the polymerase must travel along
one strand of the double helix, reading off the se-
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quence of nucleotide bases and assembling a
complementary strand of messenger RNA. One
mechanism of control prevents transcription by
physically blocking the progress of the RNA
polymerase molecule. The blocking is done by
the lac repressor protein, which binds to the DNA
downstream of the promoter region and stands
in the way of the polymerase.

When lactose enters the bacterial cell, the lac
operon is released from this restraint. A metabo-
lite of lactose binds to the lac repressor, changing
the protein’s shape and thereby causing it to
loosen its grip on the DNA. As the repressor pro-
tein drifts away, the polymerase is free to march
along the strand and transcribe the operon. 

The repressor system is only half of the lac
control strategy. Even in the presence of lactose,
the lac enzymes are synthesized only in trace
amounts if glucose is also available in the cell. The
reason, it turns out, is that the lac promoter site is
a feeble one, which does a poor job of attracting
and holding RNA polymerase. To work effective-
ly, the promoter requires an auxiliary molecule
called an activator protein, which clamps onto the
DNA and makes it more receptive. Glucose caus-
es the activator to fall away from the DNA just as
lactose causes the repressor to let go—but the ul-
timate effect is the opposite. Without the activator,
the lac operon lies dormant.

All these tangled interactions of activators and
repressors can be simplified by viewing the con-
trol elements of the operon as a logic gate. The in-
puts to the gate are the concentrations of lactose
and glucose in the cell’s environment. The output
of the gate is the production rate of the three lac
enzymes. The gate computes the logical function:
(lactose AND (NOT glucose)).

A question remains: Do these biochemical con-
trol mechanisms exhibit the on-off, all-or-noth-
ing character of digital circuits? Although the
transition between states is never perfectly sharp,
the digital approximation is often a good one. A
factor that tends to steepen the response curve is
the cooperative action of multiple subunits in the
regulatory proteins. The lac repressor consists of
four subunits, and the lac activator has two. Al-
though the first subunit may be slow in binding
to the DNA, subsequent units stick to one anoth-
er as well as to the DNA, and so the binding goes
faster. The net effect is to make the threshold for
repression or activation sharper.

Biochemical Circuits and Networks
The analogy between metabolic regulators and
digital logic was already noticed 40 years ago. In
1961 Monod and Jacob wrote about genetic cir-
cuits and switching networks, and they de-
scribed how activator and repressor proteins
could be organized into systems that would func-
tion as memory elements and oscillators. Other
authors soon explored the connection between
molecular biology and digital computing in
greater depth and detail; indeed, for several

years the theme was a frequent one in the Journal
of Theoretical Biology and the Bulletin of Mathemat-
ical Biophysics.

The main focus of these early studies was on
using digital models as a way of understanding
events in the living cell. The Boolean approxima-
tion was a way of avoiding an unwieldy analysis
of a complex chemical web. To follow all those
molecular interactions in complete detail would
have required tracking the concentrations of in-
numerable molecular species, measuring the
rates of chemical reactions, and solving hundreds
of coupled differential equations. Pretending that
every gene is either on or off reduced the prob-
lem to a simpler digital abstraction.

The biological computer turns this idea upside
down. Instead of constructing a computational
model of biochemistry, you exploit quasi-Boolean
biochemistry to do computing. This notion also
has a history. In the 1970s Otto Rössler analyzed
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Figure 1. Biological NOT gate is implemented by a repressor-regulated
gene. Presence of the input repressor (top) blocks transcription of the
gene; absence of the repressor (bottom) allows RNA polymerase to
make messenger RNA for the output protein.
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Figure 2. NAND gate is an elaboration of the NOT gate, fitted with two
repressor sites in series. Either A or B blocks transcription (top); the
output protein appears only when both A and B are absent (bottom).



various coupled systems of chemical reactions that
could implement the abstract computers called fi-
nite automata. More recently, other groups have
looked at schemes of computing based on the cat-
alytic activities of enzymes.

The most novel plan for biologically inspired
computing was conceived by Leonard M. Adle-
man of the University of Southern California. His
basic idea is to use the complementary base-pair-
ing of DNA as a pattern-matching engine. Adle-
man himself and others have demonstrated the
feasibility of this idea in experiments where vials
of DNA carry out computational tasks in number
theory and combinatorics.

Bioware
All of the molecular computing methods men-
tioned above envision that the computation will
be done in vitro. Although the molecules are of
biological origin, they are extracted from the cell,
and the reaction takes place in laboratory glass-
ware. But why not turn the living cell itself into a
computer, powered by its own metabolism? Sev-
eral research collaborations have done work
pointing toward this possibility. Here I shall focus
mainly on the ideas of a group at MIT, who have
examined the computational aspects of the prob-
lem in great detail. The MIT group consists of
Thomas F. Knight, Jr., Harold Abelson and Gerald
Jay Sussman, and several of their present and for-

mer students, including Don Allen, Daniel Coore,
Chris Hanson, George E. Homsy, Radhika Nag-
pal, Erik Rauch and Ron Weiss.

The first major goal of the MIT group is to de-
velop design rules and a parts catalogue for bio-
logical computers, like the comparable tools that
facilitate design of electronic integrated circuits.
An engineer planning the layout of a silicon chip
does not have to define the geometry of each tran-
sistor individually; those details are specified in a
library of functional units, so that the designer
can think in terms of higher-level abstractions
such as logic gates and registers. A similar design
discipline will be needed before biocomputing
can become practical.

The elements of the MIT biocomputing design
library will be repressor proteins. The logic “fam-
ily” might be named RRL, for repressor-repres-
sor logic, in analogy with the long-established
TTL, which stands for transistor-transistor logic.
The basic NOT gate in RRL will be a gene encod-
ing some repressor protein (call it Y), with tran-
scription of the Y gene regulated in turn by a dif-
ferent repressor (call it X). Thus whenever X is
present in the cell, it binds near the promoter site
for Y and blocks the progress of RNA polymer-
ase. When X is absent, transcription of Y proceeds
normally. Because the Y protein is itself a repres-
sor, it can serve as the input to some other logic
gate, controlling the production of yet another re-
pressor protein, say Z. In this way gates can be
linked together in a chain or cascade.

Going beyond the NOT gate to other logical op-
erations calls for just a little more complexity. In-
serting binding sites for two repressor proteins (A
and B) upstream of a gene for protein C creates a
NAND gate, which computes the logical function
NOT AND. With the dual repressor sites in place,
the C gene is transcribed only if both A and B are
absent from the cell; if either one of them should
rise above a threshold level, production of C
stops. It is a well-known result in mathematical
logic that with enough NAND and NOT gates, you
can generate any Boolean function you please.
For example, the function (A OR B) is equivalent to
(NOT (A NAND B)), while (A AND B) is ((NOT A)
NAND (NOT B)). The NOT gate itself can be viewed
as just a degenerate NAND with only one input.
Thus with no more resources than a bunch of
NAND gates, you can build any logical network.

Pairs of NAND gates can also be coupled togeth-
er to form the computer memory element known
as a flip-flop, or latch. Implementing this concept
in RRL calls for two copies of the genes coding for
two repressor proteins, M and N. One copy of the
M gene is controlled by a different repressor, R,
and likewise one copy of the N gene is regulated
by repressor S. The tricky part comes in the con-
trol arrangements for the second pair of genes:
Here the repressor of M is protein N, and sym-
metrically the repressor of N is M. In other words,
each of these proteins inhibits the other’s synthe-
sis. Here’s how the flip-flop works. Suppose ini-
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Figure 3. Biochemical flip-flop relies on cross-coupled genes, which
inhibit each other’s output. Here transcription of the N gene at the
bottom shuts down the M gene just above it. Genes regulated by S
and R (“set” and “reset”) control the system: Momentarily removing
R would trigger a switch to production of M instead of N.



tially that both R and S are present in the cell,
shutting down both of the genes in the first pair;
but protein M is being made at high levels by the
M gene in the second pair. Through the cross-cou-
pling of the second pair, M suppresses the out-
put of N, with the collateral result that M’s own
repressor site remains vacant, so that production
of M can continue. But now imagine that the S
protein momentarily falls below threshold. This
event briefly lifts the repression of the N gene in
the first pair. The resulting pulse of N protein re-
presses the M gene in the second pair, lowering
the concentration of protein M, which allows a
little more N to be manufactured by the second N
gene, which further inhibits the second M gene,
and so on. Thus a momentary change in S switch-
es the system from steady production of M to
steady production of N. Likewise a brief blip in R
would switch it back again. (S and R stand for
“set” and “reset.”)

One conclusion to be drawn from this synopsis
of a few RRL devices is that a computer based on
genetic circuits will need a sizable repertory of
different repressor proteins. (I’ve used up a third
of the alphabet already.) Each logic gate inside a
cell must have a distinct repressor assigned to it,
or else the gates would interfere with one anoth-
er. In this respect a biomolecular computer is
very different from an electronic one, where all
signals are carried by the same medium—an
electric current. The reason for the difference is
that electronic signals are steered by the pattern
of conductors on the surface of the chip, so that
they reach only their intended target. The biolog-
ical computer is a wireless device, where signals
are broadcast throughout the cell. The need to
find a separate repressor for every signal com-
plicates the designer’s task, but there is also a
compensating benefit. On electronic chips, com-
munication pathways claim a major share of the
real estate. In a biochemical computer, communi-
cation comes for free.

Are there enough repressor proteins available to
create useful computational machinery? Note that
interference between logic gates is not the only po-

tential problem; the repressor molecules taking
part in the computation must also be distinct from
those involved in the normal metabolism of the
cell. Otherwise, a physiological upset could lead to
a wrong answer; or, conversely, a computation
might well poison the cell in which it is running. A
toxic instruction might actually be useful—any
multitasking computer must occasionally “kill” a
process—but unintended events of this kind
would be a debugging nightmare. You can’t just
reboot a dead bacterium.

Nature faces the same problem: A multitude of
metabolic pathways have to be kept under con-
trol without unwanted crosstalk. As a result, cells
have evolved thousands of distinct regulatory
proteins. Moreover, the biocomputing engineer
will be able to mix and match among molecules
and binding sites that may never occur together
in the natural world. The aim of the RRL design
rules is to identify a set of genes and proteins that
can be encapsulated as black-box components, to
be plugged in as needed without any thought
about conflicts.

Another important design tool is a simulator,
which allows a device to be tested without the
substantial effort of building a prototype. The
world of electronics has long relied on a simula-
tor called Spice, which models the physics of
transistors and other electronic components. The
MIT group is building a BioSpice simulator,
which will model the dynamics of genetic cir-
cuits in a similar way.

So far, the MIT group has based their design
work primarily on such simulations, but other
groups have begun a few “wet” experiments.
Michael B. Elowitz and Stanislas Leibler of
Princeton University have created a free-running
genetic oscillator in E. coli. Arranging three re-
pressor genes so that they act on one another in
turn, they observed periodic fluctuations in gene
expression, with a frequency independent of the
cell’s reproductive cycle. In another E. coli exper-
iment, James J. Collins, Timothy S. Gardner and
Charles R. Cantor of Boston University built a
genetic toggle switch much like the flip-flop de-
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Figure 4. Multicellular biocomputer might organize its own structures much as tissues and organs differentiate. In
this simulation an irregular and unsynchronized array of cells, all running the same genetic program, spontaneously
generate a complex pattern—as it happens, the pattern for a chain of electronic NOT gates. (Image reproduced with
permission of the MIT Artificial Intelligence Laboratory.)



scribed above, with two cross-coupled promoters
and repressors. They report “robust bistability.”
Their eventual aim is the construction of “genet-
ic applets”—self-contained program modules
that could be “downloaded” into organisms. 

Be Fruitful and Multiply
Persuading a living cell to perform useful com-
putations is quite a trick, and yet it’s not all that’s
needed. The real goal is to get a billion cells
working in concert on the same task.

From one point of view, mass producing bac-
teria is extraordinarily easy. You don’t have to
build a billion-dollar “fab line” to manufacture
them; just supply warmth and nutrients, and the
bacteria will take care of proliferation on their
own. The hard part is organizing a population of
cells so that they work toward some specified
goal. Here again electronic and biological tech-
nologies diverge. On a silicon chip, every circuit
element has an assigned place and function, but
living cells are squishy and motile and not easily
confined to a rigid grid. The MIT group there-
fore takes another cue from biology, and lets
large-scale structures emerge from processes akin
to natural development and differentiation.

In an embryo, cells of identical genetic endow-
ment differentiate into distinct tissues and organs,
and also generate patterns such as the stripes and
spots of animal pelts. What is most intriguing
about biological development is that all the cells
begin with the same “program,” and they organ-
ize themselves without any externally designated
leader. It all seems to be done by means of short-
range communication between neighboring cells
and the diffusion of chemical signals over longer
distances. These same mechanisms would also be
available to a multicellular biocomputer.

The study of large arrays of simple processing
elements is a classical topic in computer science,
but for the most part the arrays have been geo-
metrically regular, and the processors have oper-
ated in strict synchrony. The MIT group offers a
new paradigm of “amorphous computing” by
spatially irregular and unsynchronized arrays. If
all the processors run the same program, and
they have only local communication, what pat-
terns can emerge in such an amorphous blob of
computers? Some of the examples generated so
far have a distinctly botanical look to them, and
yet they also resemble the design drawings for a
silicon integrated circuit.

Many further hurdles remain before biocom-
puting could become a practical technology. Input
and output are problematic. Maybe the input de-
vice will be a pipette of pheromone, and fluores-
cent proteins could produce output signals, but
the expressive possibilities of these facilities seem
rather limited. Large-capacity long-term stor-
age—a biological disk drive—is also lacking. And
speed is a concern, even with the extraordinary
level of parallelism implicit in the exponential
growth of a bacterial colony. Silicon processors

are running at a gigahertz, but the speed of ge-
netic circuits is in the millihertz range. Even a bil-
lion bacteria are no match for a Pentium.

But surely it would be a mistake to think of the
E. coli computer as a beige box that will sit on
your desk running a prokaryotic version of Mi-
crosoft Windows. A more likely prospect is a crop
of programmable biological sensors, actuators
and messengers. One contemplated application
of such organisms is the assembly of nanoscale
structures; instead of replacing semiconductor cir-
cuits, the cells would fabricate them. Another
possibility is the old fantasy of a microscopic ro-
bot that could enter the human body to repair dis-
eased tissues or combat infections. If this day-
dream of an intravenous computer is ever to
happen, success seems more likely with the tools
of genetic engineering than with a soldering iron.

Or maybe not. Maybe in the end it’s just fool-
ishness to imagine that anything so intellectually
demanding as computation could be imposed on
a biological substrate. No living organism can be
expected to engage in abstract reasoning and
symbol manipulation while carrying on with the
daily routine of ingestion, growth, excretion,
sleep, procreation. Get a life!
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