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C
ounting is something we learn so early in
life that we tend to dismiss it as a trivial
skill, beneath the notice of mathematics.

The recent U.S. presidential election suggests oth-
erwise. Although most of the vote-counting con-
troversies last fall concerned what to count rather
than how to count, the counting process itself also
proved to be imprecise and unreliable. Counting
and recounting the same batch of ballots seldom
gave the same total twice. Evidently, counting is
not the utterly deterministic procedure we take it
to be. There is some wiggle and wobble in it.

And ballots are not the only things we can lose
count of. The Census Bureau has reported the
U.S. population as 281,421,906, but no one be-
lieves this “actual enumeration” of the people is
exact; the Bureau will deserve congratulations if
even the first two of those nine digits are correct.
Similarly, a U.S. Treasury web site displays “the
public debt to the penny”; the last time I checked,
the amount shown was $5,719,452,925,490.54, but
again it’s hard to believe that the accuracy of this
figure matches its precision. Other purveyors of
large numbers are more modest in their claims to
exactitude. The New York Stock Exchange re-
ports daily trading volume only to the nearest
100 shares. And the sign in front of my local Mc-
Donald’s is stuck on “Over 99 billion served.”

If counting is not a process we can count on, it
seems prudent to look into the various ways it
might go wrong. A theory of counting errors
would describe the relation between the true
number of things counted, which I’ll designate N,
and the number of counts actually registered, R. If
you knew enough about the errors, you could
predict R for any N. The inverse problem is hard-
er: Given an observed count R, can you estimate
the true N? The answer will not settle any election
controversies, but it does lead into some curious
byways of mathematics and computation.

Peano Arithmetic
The simplest kind of counting is based on tally
marks. Start with a blank sheet of paper. For each
object to be counted, make a mark on the page.

When you’re finished, the number of marks
should match the number of objects.

This kind of counting is surely ancient, but it
was given a formal, axiomatic basis just a century
ago by the Italian mathematician Giuseppe
Peano. Peano’s scheme of arithmetic begins by
postulating the existence of the number zero, or
0. The next number is defined as the successor of
zero, written S(0). Next comes the successor of
the successor of zero, or S(S(0)), then S(S(S(0))),
and so on. Continuing in this long-winded way,
you can count as high as you please; it’s just a
matter of applying the same rule over and over.

Peano’s axioms belong to the ideal world of
Platonic mathematics—the same world where
geometric points are dimensionless, circles are
perfectly round, and lines run straight and true to
infinity. In that empyrean realm, chad are never
hanging, and every count is full, fair and accu-
rate. But that’s not the world we live and count in.

When considering the causes of counting errors,
it’s helpful to have in mind a specific counting ma-
chine. A Peano counter might be a box with a long
row of light bulbs on the front panel. Events to be
counted enter the machine via a single input port;
the input could be a wire, and the events pulses of
voltage. The light bulbs are the machine’s output.
Initially, all the bulbs are dark. Each time an event
is recorded, a bulb turns on—and thereafter stays
on forever—so that the number of lit bulbs repre-
sents the number of events counted.

Such a machine could have many modes of
failure. For example, a bulb could burn out, or a
fuse could blow. Here I shall focus on one specif-
ic type of error: the possibility that a count fails to
register. That is, a pulse arrives at the input, but
no bulb lights up in response; the input is ig-
nored, and the state of the machine remains un-
changed. Such lost counts are assumed to be ran-
dom and uncorrelated accidents, so that the
machine operates probabilistically. If the counter
is in state R when a pulse arrives, it moves to the
correct successor state S(R) with probability p,
and it stays in state R with probability 1– p.

The basic mathematical properties of the prob-
abilistic Peano counter are easy to describe. Be-
cause events can get lost but extra events are nev-
er introduced, the registered count R must always
be less than or equal to the true count N. Also,
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the successive values of R must form a nonde-
creasing sequence: The counter can never run
backwards. In any long series of counting trials,
the mean value of R should be equal to pN. For
example, with p = 0.75, a stream of 100 events will
register 75 counts on the average. The extent to
which individual results depart from the mean
can also be measured statistically. The standard
deviation of the distribution is proportional to the
square root of p(1– p); thus the results are scat-
tered most widely when p is 1⁄2, and the distribu-
tion gets narrower as p approaches either 0 or 1.

In a Peano counter with given values of N and
p, you can easily gauge the probability of observ-
ing any value of R. However, predicting R when
you know N is seldom what you want to do.
More often, you are given R and you want to es-
timate N; that is, you know the tally announced
by the county canvassing board, and you want to
estimate how many votes were actually cast for
each candidate. This inverse problem is subtler,
especially when you don’t know p. But if you can
count the same set of objects many times, you
can learn the shape of the distribution; then, the
mean and the width yield an estimate of N.

Cascading Errors
Peano counting has the wholesome virtues of sim-
plicity and transparency. Even in the presence of
errors, it gives reasonably predictable results.
There’s just one problem: It never seems to accom-
plish anything. You start out with a heap of ballots,
and after you count them you have a sheaf of pa-
pers covered with tally marks. Now you have to
count the tally marks. If you do so by the Peano
process, you wind up with another set of tally
marks, which need to be counted in turn.

To make the count comprehensible, you have
to introduce some higher-level structure. One fa-
miliar approach is to arrange the tally marks in
groups, making four parallel strokes and then a
fifth cross-stroke. In a second stage of counting,
you can tally the groups of five, producing a
page that has only one-fifth as many marks (plus
a few leftovers, typically). Repeating the process,
you count by twenty-fives, then by one-hundred-
twenty-fives, etc. A slight variation on this pro-
cedure will have you counting in Roman numer-
als. But any such hierarchical scheme changes the
error model. Suppose you make a mistake not in
the original tally but in one of the higher-level
consolidations; then the count changes not by
one unit but by some power of 5.

Rather than analyze Roman enumeration in
greater detail, let’s proceed directly to counting in
modern positional notation. Counting with tally
marks is essentially a unary, or base-1, process.
Adopting a base larger than 1 makes counting
more efficient but also more treacherous.

Mechanical counters based on decimal nota-
tion are found in odometers and many other de-
vices, including lever-actuated voting machines.
In these mechanisms, input events drive a units

wheel; each time this wheel completes a full turn,
it jogs the tens wheel by a tenth of a revolution;
then the tens wheel moves the hundreds wheel
by the same amount, and so on. 

Electronic counters are generally binary rather
than decimal. A k-bit binary counter can count
from 0 up to 2k – 1; for example, an eight-bit
counter runs up to 255 (which is 11111111 in bina-
ry). The basic building block for a binary counter
is a device called a flip-flop, which has a single
input, a single output and two internal states, la-
beled 0 and 1. In state 0, when the flip-flop re-
ceives an input pulse, it flips to state 1 but does
nothing else. In state 1, when an input pulse ar-
rives, the machine flops back to state 0 and also
emits an output pulse. A k-bit binary counter re-
quires k flip-flops. They are wired together in a
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Figure 1. Simplest model of fallible counting is based on unary arith-
metic. The 25 green lines (many overlapping) trace individual trials of
a counter with a 3 percent probability of failing to register each event.
The yellow line is the mean of a larger sample of trials; its slope is 0.97.
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Figure 2. Unary counter produces a smooth binomial distribution
with a mean at pN (where p is the probability of correctly recording a
count and N is the true total). The standard deviation is proportional
to the square root of p(1–p). Each curve represents a million samples.



cascade arrangement, with the output of each de-
vice becoming the input to the next. Initially, all
the flip-flops are in the 0 state. The first input
event flips the least-significant bit to 1. The next
pulse flops this bit back to 0, and the output of
the first flip-flop changes the next bit to 1. As suc-
cessive pulses arrive, the cascade of flip-flops
counts through the sequence of binary numbers:
0, 1, 10, 11, 100, 101, 110, etc.

What kinds of errors could upset this process?
For one thing, the hazard that plagues the unary
counter is still present: A signal might fail to reg-
ister at the input port, so that the state of the
counter would remain unchanged. But now there
are other weak points as well. Each of the signals
between stages of the flip-flop cascade is subject

to the same kind of failure. And if a pulse be-
tween stages is lost in transmission, the conse-
quences can be more drastic than a mere failure
of the counter to advance.

Consider a four-bit counter in the state 0111
(equivalent to the decimal number 7). On the
next input event, the rightmost flip-flop should
change state from 1 to 0, issuing an output pulse
that causes the next flip-flop to make a similar
transition; when the signals have rippled all the
way through the cascade, the next state of the
counter is 1000 (decimal 8). But suppose the in-
put pulse is recognized successfully, and so are
all the intermediate signals except for the very
last one, which is lost in transmission. Then all
the 1 bits in the original state flop back to 0, but
the 0 bit fails to flip to 1. As a result of this single
error, the counter is reset to 0000, and the entire
history of the count is wiped out.

The statistics of such errors are clearly different
from those of the Peano counter. It is still true that
R ≤ N, since there is no way for the recorded count
to get ahead of the true count. But the sequence of
R values is no longer guaranteed to be non-
decreasing. Whenever the output of a flip-flop fails
to propagate to the next stage, the count retreats; it
is said to fall off a “Hamming cliff,” named for the
mathematician Richard W. Hamming. Moreover,
the mean value of R is no longer equal to pN.

The trajectory of a cascade counter—the graph
of R as a function of N—is typically a straight line
ascending to the right with slope 1, interrupted at
intervals by sudden falls from Hamming cliffs, af-
ter which the ascent resumes. Even with this er-
ratic behavior, it seems possible that the mean val-
ue of R, averaged over many samples, would still
be a simple function of N. But in fact the graph of
the mean is neither a straight line nor a smooth
curve; it has discontinuities near each power of 2.
This nonlinearity makes estimating N from a
knowledge of R even more challenging.

Mental Arithmetic
A week or two after the November election, while
the perils and pitfalls of counting were still the
topic of every conversation, I received two fasci-
nating papers by Peter R. Killeen and Thomas J.
Taylor of Arizona State University, giving an
analysis of errors in cascade counters. The papers
make no mention of ballot counting. Their moti-
vation comes from a quite different area: the ques-
tion of how people and animals judge duration.
One hypothesis holds that a mental or neuronal
counter accumulates pulses from a pacemaker os-
cillator. Killeen (a psychologist) and Taylor (a
mathematician) investigate the effect that errors
in the counter would have on the accuracy of bio-
logical timers. Along the way they discover a great
deal about fallible counters in general.

Killeen and Taylor summarize the operation
of a cascade counter by means of a transition ma-
trix, which gives the probability of every possible
transition between states. For example, here is
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Figure 3. Binary cascade counter also has a 3 percent chance of error,
but signals can be lost between stages of the mechanism as well as at
the input. When the counter falls off a “Hamming cliff,” it can even
be reset to zero. Again 25 individual trajectories are shown (green).
The mean (yellow) is no longer a straight line.
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Figure 4. Distributions from a fallible binary counter are not smooth
and symmetrical; humps and escarpments appear near powers of 2.
The irregularities are not statistical noise; they maintain their shape at
all sample sizes (here a million for each curve). Note that the proba-
bilities are not the same as those in Figure 2; p has been adjusted
because a cascade counter has more opportunities to make mistakes.



the transition matrix for a four-state (or two-bit)
binary counter that operates without error:

The first row indicates that if the current state of
the counter is 00, the next state will be 01. The re-
maining rows show further transitions from 01 to
10, from 10 to 11, and finally (when the counter
exceeds its capacity) from 11 back to 00. All other
transitions have zero probability.

Now consider the corresponding matrix for a
two-bit counter vulnerable to lost-pulse errors:

Here p is the probability of a correct counting
transition, and q is equal to 1– p, the probability
of a signaling failure. All the entries on the main
diagonal are q, since this is the probability that
the initial input will fail to register, so that the
state of the counter remains unchanged. The en-
tries on the “superdiagonal”—corresponding to a
correct transition—are equal to p or powers of p.
The transition from 00 to 01 has probability p, but
the 01-to-10 transition has probability p2, because
two bits must change and two signals must be
transmitted. Along the “subdiagonal,” some en-
tries are the product of p and q, since the transi-
tion requires one success and one failure.

The beauty of the matrix representation is that
it can trace the evolution of the counter’s state
through many transitions. A single application of
the matrix gives the probability distribution after
one input event. To find the probabilities after two
inputs, simply multiply the matrix by itself. More
generally, the state of the counter after N inputs is
specified by the Nth power of the matrix. 

From a study of the matrix power series, Killeen
and Taylor measure the decay of information in a
fallible cascade counter. In the low-order bits of
the counter, the correlation between N and R di-
minishes continually, approaching a limit where
the bits are essentially random. But correlations
persist in the high-order bits, as long as the capac-
ity of the counter is not exceeded. In a totally ran-
dom process, the distribution of R would become
flat, and all entries in the matrix would be equal to
1/N. But a fallible counter maintains a delicate bal-
ance between order and randomness. The distrib-
ution of R is neither flat (as in a random-number
generator) nor smoothly peaked (as in a unary
counter); it is a curve with curious lumps and os-
cillations and a hint of self-similarity, or fractal
structure. The hint becomes patent when Killeen

and Taylor examine the spectrum of the transition
matrix—the series of characteristic numbers
known as eigenvalues. The spectrum yields a clas-
sic fractal object called a Julia set. Viewed in this
light, counting correctly is a rather dull pastime,
and so is counting at random; but just the right
dash of error turns it into a thing of beauty.

Shades of Gray
The main hazards to correct binary counting are
those perilous Hamming cliffs. A tiny misstep—if
it happens to come as a string of 1s rolls over to
0s—can put you over the edge. Engineers long
ago confronted this problem in other contexts. For
example, when encoding the angular position of a
shaft as a binary number, the slightest misalign-
ment can cause large uncertainty at a Hamming
cliff. The standard remedy is an alternative to the
ordinary binary numbers called a Gray code,
which replaces the cliffs with gentler slopes.

Gray codes are named for Frank Gray, who
was a physicist at Bell Telephone Laboratories in
the 1950s and ’60s, but the idea actually goes back
to Emile Baudot, the French pioneer of the tele-
graph. The basic principle is to arrange the count-
ing numbers in a sequence where each transition
alters only one bit. For example, here is a three-bit
Gray code: 000, 001, 011, 010, 110, 111, 101, 100.
Note that all eight three-bit patterns appear in the
sequence, and that each number differs from its
neighbors at just one bit position. Many such
codes exist, although the one shown here—called
the reflected Gray code—is the most common.

Could Gray codes improve the accuracy of
counting? At first, the idea seems promising: A
missed event would set the count back by only
one step, as in the unary Peano counter. But it’s
important to look at the internal details of a
Gray-code counter. How does the counter gener-
ate the correct permutation of the binary numer-
als? For a shaft encoder, the sequence would be
calculated in advance and permanently engraved
in the hardware, but that’s not a realistic option
for a counter of larger capacity.

As it turns out, the obvious way to generate
the reflected Gray code is to use an ordinary bi-
nary counter as an auxiliary. The position of the
rightmost 1 bit in the auxiliary marks which bit
should change next in the Gray code. But this im-
plementation of the counter can hardly improve
its error performance. At best, the Gray-code
counter will inherit all the flaws of the binary
counter. What’s worse, when the binary and the
Gray-code patterns get out of synch, the counter
tends to go off on wild zigzag or crenelated tra-
jectories. It can even start counting backwards.
The behavior of the machine is fascinating, but it
has little to do with the concept of counting.

I have looked for other ways to implement a
reflected Gray-code counter, but the schemes I
have tried turn out to be functionally equivalent
to the auxiliary-counter method, and they suffer
from the same error catastrophes. Of course it’s

00 01 10 11
00 0 1 0 0
01 0 0 1 0
10 0 0 0 1
11 1 0 0 0

00 01 10 11

00 q p 0 0
01 pq q p2 0
10 0 0 q p
11 p2 0 pq q

00 01 10 11
00 0 1 0 0
01 0 0 1 0
10 0 0 0 1
11 1 0 0 0

00 01 10 11

00 q p 0 0
01 pq q p2 0
10 0 0 q p
11 p2 0 pq q
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entirely possible there’s a clever method I’ve
missed, or perhaps some Gray code other than
the reflected one solves the problem.

Coding theory offers many other strategies for
reducing error. The simplest device is a “parity
bit,” an extra bit that keeps track of whether the
number of 1s in a binary number is odd or even.
A parity check would combine particularly well
with a Gray-code counter, because the number
of 1s in a Gray code must alternate between odd
and even. A 1990 report prepared for the Federal
Election Commission recommends that ballot-
counting machines be equipped with parity bits
or other error-detecting devices.

How Not to Count
After the fall election, when I began thinking
about the failure modes of counting machines, the
subject seemed like a cute mathematical diversion
of no practical application. I assumed that the er-
ror rate in real hardware would be so low that a
machine would almost never fall off a Hamming
cliff. After all, the computer on which I simulated
fallible counters is itself built out of flip-flops and
similar circuits; if these devices had any apprecia-
ble error rate, my program could not possibly run.

Nevertheless, it does appear that voting ma-
chines have occasionally stumbled over Ham-
ming cliffs. The 1990 Federal Election Commis-
sion report tells the following story: “Consider,
for example, the case of the election director who
a few nights before the election realized while
drifting off to sleep that although she had had
her custodians check her lever machine counters
to ensure that they changed over from 9 to 10,
she had not had them check to ensure that they
changed over from 99 to 100. In ordering such a

check the next day, she discovered that one in
twenty counters failed the test.”

Whatever the source of error, counting is not
something we can always rely on doing with ab-
solute accuracy. Philip J. Davis writes: “As we get
away from trivial sums, arithmetic operations are
enveloped in a smog of uncertainty. The sum
12345 + 54321 is not 66666. It is not a number. It is
a probability distribution of possible answers in
which 66666 is the odds-on favorite.”

Mathematically savvy election boards might
acknowledge the irreducible fuzziness of count-
ing, and treat it as a statistical process. In a close
election the canvassing board could count the
votes multiple times, and from the resulting dis-
tribution of Rs estimate N for each candidate. An
alternative would be never to compile or publish
vote totals with greater precision than the accu-
racy of the process can support. If we can only
count with three significant figures, then the true
outcome of an election cannot be 2,912,790 to
2,912,253. Both numbers would be more honestly
expressed as 2.91 × 106. Of course this policy
would increase the likelihood of ties, but that’s
just the point. If an election is too close to call,
perhaps one should not call it.

Another option is to dispense with counting al-
together. Fundamentally, in an election decided
by simple majority rule, there is never a need to
count ballots. It can all be done by the more prim-
itive operations of sorting and matching. The pro-
cedure could be organized like a card game. Bring
the candidates together in a room with all the bal-
lots. Then let each candidate claim his or her bal-
lot cards. (This is the hard part, of course, when
decisions must be made about dimpled chad.)
Then, once all the ballots are assigned, go around
the room repeatedly, giving each candidate a turn
to pitch a ballot into a discard heap. A candidate
who runs out of ballots is eliminated. The last
candidate with ballots in hand is the winner.
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Figure 5. Gray-code counting seems to promise resistance to errors,
but the obvious implementation yields strange zigzag trajectories and
can even count backwards. The error probability is again 3 percent.


