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I
n the winter of 1917 Lewis Fry Richardson was
driving an ambulance for a French infantry di-
vision on the Western Front. At the same time,

in spare moments behind the lines, he was com-
pleting a vast project of mathematical calcula-
tions. He had set out to compute the weather, to
predict the temperature, the winds and the baro-
metric pressure from first principles of physics. It
would have been an ambitious undertaking in
the best of circumstances—in a quiet study with
a long oak table for spreading out the paper-
work. Richardson did it in the middle of a war
that was, among its other distinctions, the muddi-
est in human history. “My office,” he wrote, “was
a heap of hay in a cold rest billet.”

Richardson’s goal was to follow the develop-
ment of the weather for a six-hour interval in a
small area of central Europe. Even a forecast of
this limited scope called for a calculation of
daunting complexity. Needless to say, he had no
electronic computer to do the arithmetic for him.
He worked with pencil and paper, as well as a
slide rule and a table of logarithms. To guard
against careless mistakes he did everything twice.

The outcome was not a conspicuous success.
The actual weather changed little over the period
of the forecast, but Richardson’s equations had
the barometer rising fast enough to make your
ears pop. The calculation was a brilliant piece of
work nonetheless. Although he failed to predict
the weather, he predicted the future of weather
prediction. The forecast you now see on the six
o’clock news is based on simulations remarkably
like Richardson’s (including the occasional error).

What went wrong with that first-ever numer-
ical forecast? Many commentators have sug-
gested explanations, starting with Richardson
himself. A new analysis takes a direct approach
to understanding the source of the problem. Pe-
ter Lynch of Met Éireann, the Irish Meteorologi-
cal Service, has carefully reconstructed and
replicated the entire calculation—everything
but the heap of hay in the rest billet. He has
been able to reproduce Richardson’s error, and
even to correct it.

Off the Tenure Track
Before diving into the differential equations, it is
worthwhile pausing to look back over Lewis Fry
Richardson’s life and career, which were no less
strange and wonderful than his scientific work.
He came from a prosperous family in Newcastle
upon Tyne, the industrial port in the far north of
England. They were Quakers, and Lewis was
sent to Bootham, a distinguished Quaker board-
ing school, where his interests in science and nat-
ural history were cultivated by J. Edmund Clark,
a prominent member of the Royal Meteorological
Society. “Another master,” Richardson later
wrote, “left me with the conviction that science
ought to be subordinate to morals.”

At Cambridge, Richardson’s mentor was J. J.
Thomson, the Cavendish professor of physics
(and the discoverer of the electron). Richardson
took first-class honors in natural sciences. Later
he sought a fellowship at King’s College, but he
was passed over. There followed a decade of
short-term, low-ranking jobs in out-of-the-way
places, like the succession of postdoc appoint-
ments so many graduates face today. In the end
Richardson never did hold a chair at any of the
major British universities.

In 1913 he became superintendent of the
Eskdalemuir Observatory in the Scottish South-
ern Uplands. Talk about out-of-the-way places!
This small institution, run by the Meteorological
Office, had been founded to measure variations
in the earth’s magnetic field, and it was deliber-
ately put as far as possible from railroads and
power lines. Richardson described it as a place of
“bleak and humid solitude,” but this was proba-
bly not a complaint; when he was once asked if
he had any hobbies, his answer was “solitude.”

In any event, the solitude was soon interrupt-
ed. “In August 1914,” Richardson wrote later, “I
was torn between an intense curiosity to see war
at close quarters and an intense objection to
killing people, both mixed with ideas of public
duty and doubt as to whether I could endure
danger.” He requested a leave of absence but was
refused. In 1916 he resigned his post and joined
the Friends’ Ambulance Unit.

After the war, Richardson returned to the Me-
teorological Office, working at the Benson re-
search station near Oxford, but that job also end-
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ed prematurely. In 1920 the Meteorological Of-
fice was put under military administration, and
Richardson felt compelled to resign again. After
that, he never got back on the tenure track.

Some biographers emphasize the price that
Richardson paid for his convictions. According to
family members, his pacifist principles cost him a
university appointment. Family memoirs also de-
scribe an anguished moment when he destroyed
his research on atmospheric turbulence because it
was attracting the attention of “the ‘poison gas’
experts.” On the other hand, it would be mislead-
ing to portray Richardson as an outcast from the
scientific establishment. He was elected a Fellow
of the Royal Society; he served as secretary of the
Royal Meteorological Society; he had well over
100 scholarly publications (recently collected in
two fat volumes by Cambridge University Press).
Today there is a Richardson Institute for Peace
Studies and Conflict Resolution, and one of the
dimensionless numbers of fluid mechanics is
called the Richardson number.

Whether for reasons of conscience or pure
predilection, Richardson did turn away from
work in meteorology after the mid-1920s. He
took a degree in psychology (at age 48), and then
for the last 15 years of his life focused on the
study of war and its prevention. He took a math-

ematical approach to these problems as well. For
most people, the idea that mathematics might be
the key to world peace seems naive and implau-
sible, but maybe we shouldn’t be too quick to
give up on it. In Richardson’s day, mathematics
also looked like an outlandishly unsuitable tool
for weather forecasting.

Checkerboard Europe
Richardson’s forecast was actually a hindcast: He
was “predicting” events that had taken place
years before. His initial data described the state of
the atmosphere over Germany and neighboring
countries at 7:00 a.m. (Greenwich time) on May
20, 1910. His goal was to model the weather in
this region over a span of six hours. He chose this
particular time and place not because the weather
was in any way unusual that Friday morning but
rather because unusually good data were avail-
able. May 20, 1910, was one of a series of days on
which weather observations were collected from
coordinated balloon ascents all over Europe. The
results had been tabulated and analyzed by the
Norwegian meteorologist Vilhelm Bjerknes.

The observing sites for the Bjerknes project were
scattered irregularly across the map of Europe,
and so Richardson had to interpolate to produce a
uniform grid of data points. The grid he chose was
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Figure 1. Lewis Fry Richardson’s imaginary “forecast factory” would have employed some 64,000 human computers to
keep up with the pace of the weather. The workers sit in tiers inside a great spherical theater; the director, atop a
pedestal in the middle, shines a beam of light on those places where the calculation is getting ahead or falling behind.
This painting of the forecast factory is by the Belgian artist François Schuiten. Reproduced by permission of the artist.



a checkerboard, with squares roughly 200 kilome-
ters on a side. A pattern of 25 squares covered a
diamond-shaped region extending from Denmark
to Italy and from the English Channel to Poland.
Vertically, he sliced the atmosphere into five lay-
ers, with boundaries at altitudes of roughly 2, 4, 7
and 12 kilometers. (The heights were chosen so
that each stratum had about the same mass of air.)
Thus the model divided the volume being studied
into 125 compartments.

The pattern of squares laid out on the landscape
was described as a checkerboard rather than
merely a grid because different quantities were
computed in the alternating black and white
squares. In one set of squares (called P cells)
Richardson recorded the barometric pressure in
each of the five altitude layers, and also moisture
amounts and the stratospheric temperature. In the
other squares (M cells) he calculated the momen-
tum of the atmosphere—that is, the wind speed
and direction multiplied by the mass of the air. 

It’s not hard to see in a qualitative way how
these variables would enter into a model of the
atmosphere’s dynamics. In particular, winds and
barometric pressures have an obvious intercon-
nection. Pressure is the force that drives the
winds; air flows from place to place in response
to differences in pressure. At the same time, the
convergence or divergence of winds alters the
pressure in a region, as air is either blown in or
sucked out. A similar linkage connects pressure
with temperature, since heat is generated when
air is compressed. The model has to track all
these relationships (and others) from moment to
moment. Given initial values of all the variables
at time t0, the model calculates the values at a lat-

er time t1; then these t1 values form the basis of a
new calculation at time t2, and so on.

The most important quantities to keep track of
in Richardson’s model turned out to be baromet-
ric pressure and three components of momentum
(along north-south, east-west and up-down axes).
All of these quantities vary from place to place
and from moment to moment; in other words,
they are functions of latitude, longitude, height
and time. There are also crucial dependencies
among them. For example, one of Richardson’s
equations states that the rate of change in the east-
west component of momentum depends on the
pressure gradient along the same axis. This rela-
tion is unsurprising; it says that air goes where
you push it. But the full atmospheric equations
of motion are more complicated. In addition to
the pressure-gradient term, they also includes a
term representing the Coriolis force, by which the
earth’s rotation twists the winds and thereby cou-
ples east-west and north-south velocities.

Vertical motions in the atmosphere are even
more problematic. No vertical winds were in-
cluded among the initial data. To calculate them,
Richardson relied on a simple ground truth: The
earth is solid, and therefore impervious to wind.
It follows that if horizontal winds are converging
in some ground-level cell of the model atmos-
phere, then air must be flowing upward out of
that cell. By the same principle, divergent winds
at ground level must be balanced by air sinking
into the cell from above.

Leapfrog Integration
In general, the system of differential equations de-
scribing the behavior of the atmosphere cannot be
solved exactly. Bjerknes advocated a graphical
method of finding approximate solutions, but
Richardson favored numerical techniques. Specif-
ically, he adopted a finite-difference method, re-
placing continuously varying fields with changes
calculated over discrete intervals. For example,
consider the calculation of the winds in a given M
cell. In the discrete model the change in the east-
west component of the wind depends on the dif-
ference between the pressures in the P cells to the
east and the west; in the same way the north-
south component is calculated from the difference
in pressure values to the north and south. 

Boundary conditions present an annoying
complication. If the winds in an M cell depend
on the four surrounding P cells, what happens at
the edge of the array, where some of the P cells
do not exist? The ideal solution would be to cov-
er the entire globe, so there are no edges, but that
option was beyond Richardson’s reach. Instead
he ducked the question by making his prediction
only for two squares (one M cell and one P cell)
in the middle of his diamond-shaped array. Thus
he made use of the initial values in the boundary
cells but did not try to calculate new values there. 

Time as well as space is discrete in Richard-
son’s scheme. He chose a basic time unit of ∆t=3
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Figure 2. Data for Richardson’s forecast included measurements of
winds (M), barometric pressure (P) and temperature (T). Initial data
were recorded in 25 squares, each 200 kilometers on a side, but condi-
tions were forecast only for the two central squares outlined in red.



hours. He also employed a “leapfrog” method of
numerical integration, where events at time t+1
depend on the state of the system both at the pre-
sent time t and at the previous moment t–1. But
the leapfrog process hardly got started in
Richardson’s calculation. He carried out only a
single step of the integration, computing the “ini-
tial tendencies”—the rates of change in pressure,
momentum, etc.—and used these tendencies to
compute the changes in the weather over a peri-
od of 2∆t, or six hours, centered on 7 a.m.

Here are the results, as Richardson reported
them in his book Weather Prediction by Numerical
Process. In the central M cell, which covered the
area surrounding Nurenberg and Weimar, the
surface wind freshened somewhat over the six
hours of the forecast, while the stratospheric
winds increased more than tenfold. An even
more dramatic change was seen in the P cell to
the south, over Munich. According to the model,
barometric pressure in the lowest stratum rose
by 145 millibars to 1,108 millibars. If this surface
pressure had been correct, it would have been a
world record; the actual barometric reading was
nearly steady on that day.

The Answer Is Blowin’ in the Wind
What went wrong? The prime suspect in a case
like this one is usually numerical instability.
When the result of one step serves as the input
for the next step, small errors can multiply and
grow explosively. There is a rule for avoiding
such a catastrophic loss of accuracy: The time
step must be kept shorter than the time needed
for information to propagate through the mod-
el—in this case between observing stations
spaced every 200 kilometers. According to this
criterion, ∆t in Richardson’s model should have
been no more than about 30 minutes. Richard-
son can hardly be blamed for breaking this rule—
the limit on ∆t was not discovered until a decade
later (by Richard Courant, Kurt Otto Friedrichs
and Hans Lewy)—but the model is clearly in vi-
olation all the same.

The Courant-Friedrichs-Lewy condition has
been cited as a possible cause of failure by sever-
al commentators on Richardson’s work, includ-
ing Sydney Chapman in the preface to a reprint-
ing of Weather Prediction by Numerical Process.
Nevertheless, numerical instability cannot be the
source of the problem. Errors grow exponentially
when the finite-difference procedure is iterated,
with the output of each stage becoming the input
to the next stage. Richardson stopped calculat-
ing after one step. If he had kept going, instabili-
ty would doubtless have appeared, but it can’t
explain a large error in the initial tendencies.

Another possible culprit is the phenomenon
called deterministic chaos, which Edward N.
Lorenz described 35 years ago, also in the context
of weather prediction. Lorenzian chaos is super-
ficially similar to numerical instability, but a
chaotic system remains unpredictable even if

each step of the calculation is performed with
perfect precision. The slightest change in the ini-
tial conditions is enough to produce a divergent
result. There is no question that Richardson’s cal-
culation would be subject to this problem if it
were continued long enough, but again chaos
can’t explain a failure in the first step.

The real cause of Richardson’s forecasting error
was identified by Richardson himself. At the end
of his table of results, he wrote: “It is claimed that
the above form a fairly correct deduction from a
somewhat unnatural initial distribution.” In other
words, the problem lay not in the algorithm but
in the input data. A close look at the data con-
firms this diagnosis and also shows clearly why
weather prediction is such a hard problem.

The main troublespot is the part of the calcula-
tion where pressure is determined from the con-
vergence (or divergence) of winds. Along each
horizontal axis, the wind convergence is calcu-
lated as the small difference between two large
numbers. Under these circumstances, even slight
errors in the initial wind data can cause large
variations in the computed convergence. For ex-
ample, suppose the true east-west winds on ei-
ther side of a P cell have magnitudes of 101 and
99 (in some appropriate system of units). Then
the east-west convergence is equal to 2. If the
measurement of either wind is off by just 1 per-
cent, however, the convergence will change by
50 percent or 100 percent. This disastrous error in
convergence will be reflected in the predicted
barometric pressure.

Another property of the atmosphere com-
pounds the sensitivity to measurement errors. If
low-level winds in a region are converging, up-
per-level winds over the same area are usually di-
verging. This state of balance tends to reduce the
effect that convergence or divergence would have
on barometric pressure, but again the balance is
easily upset by measurement errors.

And just as errors in wind measurement de-
grade the prediction of pressure, so also pressure
errors confound wind predictions. Here too the
culprit is the subtraction of two nearly equal
quantities—the pressure-gradient term and the
Coriolis term in the atmospheric equations of
motion. Because the terms generally have about
the same magnitude, small errors in observations
yield large changes in predicted wind.

Richardson recognized these mechanisms and
suggested smoothing the initial data as a possible
remedy. Lynch points out that the problem goes
deeper. To maintain the overall state of balance in
the atmosphere, smoothing either the winds or
the pressures is not enough; the two sets of ob-
servations have to be made mutually consistent. 

The Orchestra of Slide-Rules
For his reconstruction of the Richardson experi-
ment, Lynch went back to the original weather
charts for May 20, 1910, and redid the interpola-
tion process. He found only one likely error in
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Richardson’s initial data—a suspiciously low
pressure over Strasbourg. Data values elsewhere
were in good agreement.

Although Lynch set out to create a faithful re-
production of Richardson’s model, he did not do
the arithmetic with pencil and paper; the model
was implemented as a computer program. But
even though computing power was not a limiting
resource, Lynch decided to simplify the model in
some respects. A curiosity of Richardson’s work
is that he included certain physical and even bio-
logical phenomena that now seem marginal. He
was a shrewd numerical analyst, and he must
have been able to estimate the importance of each
term in his equations; nevertheless, he invested
much effort in modeling factors that could not
possibly have much effect on the overall outcome.
For example, he calculated the temperature of the
soil at various levels and the effects of vegetation
on moisture in the atmosphere. These influences
might be barely detectable in a high-precision
weather model, but it was premature to build
them into this first crude experiment. Lynch ne-
glects these factors, and indeed drops all consid-
eration of water in the atmosphere.

The results of Lynch’s replica computation are
quite close to those of the original. The surface-
level rise in pressure was 145.1 millibars according
to Richardson, and 145.4 according to Lynch. Pre-
dicted winds do not match quite as closely, but
the average discrepancy is only about 13 percent.

Having reproduced Richardson’s faulty calcu-
lation, Lynch then went on to try correcting it.
The problem of initial observations that are not in
harmony persists in weather prediction today,
but digital filtering techniques have been devised
to reconcile the wind and pressure fields. Lynch
applied one of these filtering methods, which es-
sentially runs the model both forward and back-
ward from the starting point to generate a con-
sistent set of values. With the filtered data, and
with a smaller ∆t to ensure numerical stability,
all results were physically plausible and in rea-
sonably good agreement with observations.
Richardson came that close to getting it right.

Richardson ended his book with a daydream
about the future of numerical weather prediction.
He estimated that it would take 64,000 comput-
ers (and by “computers” he meant people) to
keep up with all the world’s weather. The work
might be done in a great spherical hall. “The
walls of this chamber are painted to form a map
of the globe. The ceiling represents the north po-
lar regions, England is in the gallery, the tropics
in the upper circle, Australia on the dress circle
and the antarctic in the pit. A myriad of comput-
ers are at work upon the weather of the part of
the map where each sits.... From the floor of the
pit a tall pillar rises to half the height of the hall.
It carries a large pulpit on its top. In this sits the
man in charge of the whole theatre.... One of his
duties is to maintain a uniform speed of progress
in all parts of the globe. In this respect he is like

the conductor of an orchestra in which the in-
struments are slide-rules and calculating ma-
chines. But instead of waving a baton he turns a
beam of rosy light upon any region that is run-
ning ahead of the rest, and a beam of blue light
upon those who are behindhand.”

Lynch and others have pointed out that the es-
timate of 64,000 computers was a serious under-
count. Even by Richardson’s own criteria, the
number probably should have been 200,000, and
a modern estimate would be much larger still.
Indeed, if we were to try to do by hand labor all
the computing that is nowadays dedicated to
weather prediction, the entire human population
could not keep up. Thus Richardson’s orchestra
of slide-rules was never a realistic possibility.
Practical forecasting by numerical methods could
not have begun much sooner than it did, with
the work of Jule Charney and John von Neu-
mann around 1950.

Nevertheless, Lynch concludes his article with
a wistful consideration of what might have been,
if Richardson’s early forecast had not gone awry.
“Let us suppose that Richardson had applied
some filter, however crude, to his initial data. His
results might well have been realistic, and his
method would surely have been given the atten-
tion which it certainly deserved.” I would not
disagree, and yet at the same time I find that
what is most interesting about the forecast is its
failure, and what is most admirable about
Richardson is his determination to publish it any-
way. The failure of the experiment even made it
worth repeating.
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