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I
t was the fourth day of a meandering coast-to-
coast road trip. We were climbing through the
Centennial Mountains along the Idaho-Mon-

tana border in an overloaded Toyota with a U-
Haul luggage pod on the roof. As we crested
Monida Pass, a sign at the roadside announced:
Continental Divide, Elevation 6,823 Feet. “Well,”
quipped my traveling companion, “I guess it’s
all downhill from here.”

For miles afterward—as we climbed still higher
hills and crossed the divide twice more—I pon-
dered that remark. The great divide is the spine of
the continent: Rain falling on one side trickles into
the Pacific, and on the other side into the Atlantic.
The concept is simple enough, but I kept wonder-
ing how we would have known we were crossing
the divide if the highway department had not put
up those helpful signs. The divide is not necessar-
ily the high point of a cross-country journey, so
what distinguishes it, geometrically or topologi-
cally? That morning in Idaho, it seemed even
more enigmatic than other lines that people draw
on the landscape. For example, a contour—a line
connecting points of equal elevation—is some-
thing you could trace out by carrying around an
altimeter, but there is no instrument that would
help you find and follow the continental divide.

The long drive home offered us ample oppor-
tunity to noodle away at this puzzle. Being a com-
puter-dependent person, my instinct was to ad-
dress the question in algorithmic terms; I would
know that I understood the answer when I could
write a program to identify the divide. Out on the
road, however, I could not put such a program to
the test. I am also a library-dependent person, but
the urge to go find out what others had to say was
also frustrated. And thus for a week or so I had no
choice but to actually think about the problem.

Dividing the Ant Farm
In a two-dimensional world, it’s easy to find a
continental divide, if it exists. Think of an ant
farm: a thin layer of soil sandwiched between
two upright panes of glass. An ant walking along
the surface of the soil from west to east will trace

a one-dimensional profile, a graph of elevation as
a function of longitude. If the profile has just one
peak—that is, if the ant climbs steadily to some
maximum elevation and thereafter descends con-
tinuously—then obviously that unique peak is
the divide. (“It’s all downhill from here,” the ant
might well say.) If there are multiple peaks with
valleys between them, the highest of the sum-
mits must be the divide.

Some pathological possibilities could spoil this
easy analysis. The ant-farm profile could have
several tallest peaks, all at exactly the same
height, or a plateau might form a continuous line
of highest points. In these cases there is no
unique continental divide. But such landforms
are unlikely. Ignoring them, the algorithm for
finding the ant-farm divide is straightforward:
Just look for the highest point.

Leaving behind the ant farm to consider a two-
dimensional surface embedded in three-dimen-
sional space, the divide problem gets more inter-
esting. In particular, the find-the-maximum
algorithm no longer works. Just try it for the case
of North America! When you search out the high-
est point in the lower 48 states, you find yourself
atop Mount Whitney, in California, elevation 4,418
meters. But Mount Whitney is nowhere near the
continental divide, and all the water that falls on
its flanks winds up in the Pacific, none in the At-
lantic. (Indeed, much of it flows through the mu-
nicipal water mains of Los Angeles.)

Thinking about this phenomenon on a larger
scale raises doubts about the whole concept of a
continental divide. Just as runoff can sneak
around Mount Whitney, it can also find a path
around the entire American Cordillera, which
doesn’t really separate the Pacific from the At-
lantic. After all, you can get from New York to
San Francisco without climbing even the smallest
hill: There is a sea-level route, around Cape
Horn. From a topological point of view, a conti-
nental divide can exist only if a continent girdles
the planet, so that the divide is a closed curve,
with an inside and an outside.

Perhaps the best answer to this complaint is
that the idea of a great divide belongs to the field
of topography, not topology. Insisting on mathe-
matical rigor is not necessarily helpful. In any
case, we can rescue the concept of the divide, at
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the cost of making it somewhat artificial. The key
step is to cut away a rectangular section of the
earth’s crust, corresponding roughly to the lower
48 states, and put it in a high-walled glass box—
a terrarium, not so different from the ant farm.
Now a continental divide is either a closed curve
that lies entirely inside the box, or else it is a con-
tinuous line whose endpoints are anchored to the
glass walls. With this definition, the divide truly
does divide the territory into separate regions.

Think Globally, Classify Locally
How should the terrain inside the box be repre-
sented mathematically? One elegant idea is to
make the earth’s surface the graph of a continuous
function h(x,y), which defines a height h for every
combination of x and y coordinates. (I assume the
spherical surface is projected onto a plane. Also,

it’s necessary to smooth out cliffs and overhangs,
so that every x,y pair yields a unique h.) The main
advantage of this scheme is that you can find max-
ima and minima of the height function by taking
the derivative of h and looking for its zeroes. The
disadvantage is that an equation for all of North
America is likely to be quite unwieldy.

A more practical alternative is a discrete model,
defining the elevation of the surface only at a finite
number of points arranged in a grid. To keep
things simple, let the grid be rectangular, formed
by the intersections of evenly spaced north-south
and east-west lines. Also, connect each grid point
only to its four nearest neighbors, so that water on
the model landscape flows only in the four cardi-
nal directions. With this model of the terrain, the
task of a continental-divide algorithm can be stated
more concretely. For each grid point, the algorithm
must answer the question: Does this point lie on
the divide? Does it shed water into two basins that
do not communicate with each other?

As we motored on into Montana, I tried to
come up with a quick-and-easy algorithm to an-
swer these questions. My first thought was to
make the most of local information about the im-
mediate neighborhood surrounding each point. I
reasoned that the divide ought to run mainly
along ridges, and ridges can be recognized by a
distinctive pattern of higher and lower neighbors.  

But analyzing neighborhoods proved messy.
Each of a point’s four neighbors can be above, be-
low or level with the central point, and so there are
34=81 possible configurations. That was too many
cases to keep in mind while cruising down the In-
terstate, so I decided to simplify by pretending
that no two adjacent grid points are ever at exactly
the same height. (This ruse is not as unrealistic as
it might seem; if you could measure elevations
with infinite precision, the probability of finding
two identical values would be zero.)

When all neighbors must be either higher or
lower, there are 16 local configurations, and they
can be further consolidated into just six classes. A
peak is a point higher than all four of its neighbors,
and a pit is lower than all of its neighbors. A point
with exactly three lower neighbors lies on a ridge-
line. The opposite case of three higher neighbors
describes points along a valley bottom—a line
known to topographers and crossword solvers as
a thalweg. Finally, the points with equal numbers
of higher and lower neighbors fall into two sub-
classes. If you stand on the central point and turn
through 360 degrees to survey the neighbors, you
might see them in a sequence such as above-above-
below-below; a point of this kind lies on a slope. If
the neighbors alternate, as in the sequence above-
below-above-below, then the point is a saddle or pass.
A saddle is special: It is the only kind of point that
lies both on a ridgeline and on a thalweg.

Somewhere between Butte and Bozeman I be-
gan to doubt that this local classification was go-
ing to yield a useful algorithm. It doesn’t even
help much in the two-dimensional case (where
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Figure 1. Global-warming algorithm finds the great divide by raising
sea level until the Atlantic and Pacific meet (but don’t mix). From top
to bottom the panels show present sea level, flooding to a depth of
about 400 meters, first emergence of the divide (red) near Deming,
New Mexico, and complete delineation of the divide. Elevation data
are from the National Oceanic and Atmospheric Administration.



each point has only two neighbors instead of
four). A divide in the ant farm always lies at a
peak, but the local properties of peaks will not tell
you which of them is the divide. Finding the high-
est peak requires global information; you have to
compare points throughout the entire array. 

For the three-dimensional model, the situation is
even stickier. Not only is local information unable
to identify the divide, but in addition there is no
simple global property that will settle the issue.
You can’t just compare each point with all the oth-
er points, looking for a maximum of some kind. In-
stead, you need to consider multiple pathways
through the array of points.

But if local configurations can’t solve the divide
problem, maybe they can at least rule out lots of
points that might otherwise be candidates for the
divide. For example, it seems beyond question
that a pit cannot form part of the divide, and so all
pits can be crossed off the list. But as we rolled on
beyond Bozeman toward Billings, I gradually re-
alized that no other kinds of points could be ex-
cluded. Peaks and ridges and saddles are clearly
allowed on the divide. It might seem that slopes
and thalwegs would be ineligible, but this is not
so. Think of a river delta, where streams diverge
and bifurcate. If such a delta were to form at the
outlet of a high alpine valley right on the conti-
nental divide, with channels flowing down either
side, then the entire area of the upstream valley
would have to be considered part of the divide, in-
cluding the slopes and the thalweg.

Admittedly, a river delta in the headwaters is a
pretty unlikely landform, but algorithms are sup-
posed to cope with even the oddest cases. And
natural landscapes do offer oddities. Some maps
show the great divide itself dividing in Wyoming,
where it envelopes a high basin. Even stranger are
some unnatural landscapes. At the Big Thompson
Project in Colorado a tunnel carries water across
the great divide—or rather under it, or under the
ridge where it ought to run—and thereby alters
the topological genus of the earth’s surface.

Divide and Conquer
Over the next 200 miles, as we followed the east-
bound Yellowstone River, I had several more
bright ideas that proved faulty. For example, I
thought I saw a way to extend the ant-farm algo-
rithm to the 3D world. The first step would be to
survey elevations along the south wall of the ter-
rarium, and find the maximum. Then set out from
this peak, moving to the highest neighboring point,
then to the highest neighbor of that point, and so
on. Stop when you come to another wall or when
the path loops back on itself. I briefly believed that
this procedure would trace out the divide. I had
forgotten that the high point on the southern
boundary is not necessarily on the divide, and so
you might go wrong from the first step.

An attempt to patch up this idea led to another
strategy, which I still find appealing even though
it seems to be a dead end. Suppose you know the

two points where a divide touches the perimeter
of a square region, but the path through the inte-
rior of the square is entirely hidden. If you could
cut the square into four smaller tiles, and deter-
mine where the divide crosses each of their sides
(if at all), then you would begin to have a rough
vision of its route. Quartering each of these
squares yields 16 more, and then 64. Soon, it
would be enough merely to know which sides of
a square are crossed by the path, without trying to
measure the exact position of the intercept. This is
a classic divide-and-conquer algorithm, with a
hint of deep recursive magic. Unfortunately, the
magic is illusion. The algorithm’s initial supposi-
tion—that we know where the divide enters and
exits each square—is unfounded.

Yet another idea also exploits the distinctive
topology of the divide—the fact that it is either a
closed curve or a curve with endpoints anchored
to the boundary. Here’s the plan. Working from
local neighborhood information, identify all the
peaks and ridgelines, and paint them red. The la-
beled ridges will form a dense network, which
probably traverses most or all of the divide, but it
includes many other paths as well. To be able to
see the divide clearly, you need to prune away
the underbrush. Topology suggests a promising
way to do it. The premise is that all the ridges ex-
cept the divide must have at least one free end—
a dangling terminal point like the end of a tree
limb. You can find these free ends by scanning
the array for red points that have only one red
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neighbor. Removing the end point creates a new
vulnerable stump. If you repeat the scan until no
more single-neighbor sites can be found, only the
divide will remain labeled—or so I thought.

In some instances this procedure actually
works, but it has serious weaknesses. In the first
place, as noted above, the divide does not have to
lie entirely on peaks and ridges, and so the first
stage of the algorithm may fail to label some
points it should. The second stage can also intro-
duce errors. Suppose two closed loops of the di-
vide are connected by a ridge that is not properly
part of the divide system (water on both sides
flows to the same basin). Because this extrane-
ous section of ridge has no free end, it cannot be
removed by the pruning procedure.

Long Division
However tricky the divide problem may prove to
be, a correct algorithm surely does exist, since na-
ture somehow solves the problem. If all else fails,
one can emulate the natural algorithm. The idea is
to let raindrops fall on each grid point, and then
follow the runoff as it drains toward lower eleva-
tions. The most thorough version of this algorithm
pursues every downhill path. That is, if a point
has three lower neighbors, then the algorithm fol-
lows droplets that roll along each of the three
downhill links. The flow stops when the droplet
reaches a pit and has nowhere more to go.

Tracing such paths for all points on the conti-
nent should identify the great divide. The divide
is just the set of points from which droplets can
reach both the Atlantic and the Pacific basins.
(This is, after all, the definition of the divide.)

The rainfall algorithm works, at least for small
test cases, but it is fabulously inefficient. An av-
erage point on the model landscape has two
downhill neighbors, which means the number of
paths to be explored doubles at every step. If a
typical path is just 20 steps long, the algorithm
will have to map a million paths for each point.

This exponential explosion of pathways
should not be necessary. Real water droplets
don’t explore all possible routes to the sea; for
the most part, they stick to the path of steepest
descent. An algorithm can do the same, which
makes the computational burden much lighter.
But there are other problems. The divide has to
be defined somewhat differently—as a path
threading between grid points rather than a con-
nected series of points. And there is the lake-bot-
tom problem: A path of steepest descent seldom
descends continuously from the divide all the
way to the ocean. It’s not all downhill from here.

Somewhere in North Dakota or Minnesota—
near another divide that separates Hudson Bay
from the Gulf of Mexico—I finally began to settle
on an idea that might be called the global-warm-
ing algorithm. It works like this: Given North
America in a terrarium, start raising the sea level,
and keep the floods coming until the Atlantic and
the Pacific just touch. At this moment you have

identified one point—namely the lowest point—
on the great divide. Now continue adding water,
but as the sea level rises further don’t allow the
two oceans to mix. (This would be a difficult trick
in a physical model, and it’s none too easy even in
a computer simulation.) Note the succession of
points on the land where east meets west, and
mark them down as elements of the divide. When
the last such point is submerged, you have suc-
ceeded in dividing the continent.

Describing this process in terms of water fill-
ing a basin tends to conceal some of the nitty-
gritty computational details. Real water is very
good at flooding; it just knows how to do it and
never makes a mistake. Simulated water, on the
other hand, must meticulously plot its every
move. To raise the level one foot, you have to
check every point adjacent to the current water-
line and decide which points will be newly sub-
merged. Then you have to look at the neighbors
of these selected points, and at their neighbors,
and so on. There’s the potential for another ex-
ponential explosion here, although with realistic
landscapes it doesn’t seem to happen.

When I finally got a chance to write a program
for this process, I found that the algorithm is ex-
quisitely sensitive to the order of operations.
Consider the situation just as the Pacific is about
to reach the lowest point on the divide. If the At-
lantic has not been raised in synchrony, then the
Pacific waters will pour over the saddle point
and flood part of the eastern basin, shifting the
divide to an incorrect position.

Landscape Images
Back home again, and plugged in to libraries as
well as computers, I was not surprised to learn
that others had gone before me in thinking about
the nature of watersheds and divides. But I was
surprised to learn just who my predecessors were.

Two of the best publications on the subject are
short papers by Arthur Cayley (a founder of
topology and graph theory) and James Clerk
Maxwell (the author of the electromagnetic theo-
ry of light). Cayley and Maxwell do not focus on
continental divides—perhaps the concept is not
an obvious one for residents of an island na-
tion—but their analysis of landforms in general
clarifies aspects the divide problem. They em-
phasize peaks, pits and saddles as the keys to de-
lineating the fundamental regions of a landscape.

Much as Euler gave a formula for the number
of faces, edges and vertices in a polyhedron,
Maxwell relates the number of topographic
peaks, pits and saddles on a surface. In the case
of a sphere, the formula is p + q – s = 2, where p is
the number of peaks, q the number of pits and s
the number of saddles. Maxwell also outlines a
procedure for dividing the landscape into water-
shed regions. Whereas all my own methods pro-
gressed either down from peaks or up from pits,
Maxwell argues that the right way to do it is to
start in the middle—at a saddle—and proceed
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toward both peaks and pits along lines of steep-
est ascent or descent.

The more recent literature on divides and wa-
tersheds held another surprise. I had expected to
find work by geographers and cartographers, and
indeed they have written extensively on the sub-
ject. But there is also a body of work by students of
image analysis and artificial vision. The connec-
tion is clear once it’s pointed out. Just as a topo-
graphic map can be presented as an image in
which elevation is encoded in brightness, so also a
digitized image can be interpreted as a surface
where altitude represents shades of gray or color.
Finding watersheds in such a surface is a useful
approach to identifying objects in the image.

The idea of using watersheds for image analysis
was first proposed at the School of Mines in Paris
in the 1970s. (The images that needed analyzing
were micrographs of ore samples.) Workers there
have continued to refine the method. The version
of the algorithm I have found most helpful was
devised by Luc Vincent and Pierre Soille when
they were both working at the School of Mines.

The Vincent-Soille algorithm is related to what
I have dubbed the global-warming method, but
with a number of enhancements. One remark-
ably simple device greatly reduces the computa-
tional effort. In addition to storing the array of
points that represents the landscape, they keep a
list of the same points sorted in order of increas-
ing elevation. With this list in hand, there is no
need to search for points that will be submerged
each time the water level rises; you can simply
cross them off in order.

As it happens, one contemplated application
of the watershed algorithm in image processing
is the old dream of a car that drives itself. The
“watersheds” detected in a video image might
be the edges of a roadway. So perhaps the next
time I cross the continental divide I’ll be able to
pay more attention. I won’t have to keep my
hands on the wheel.
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