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P
art I of this article, in the January–February
issue, discussed some very large structures
that can usefully be looked upon as mathe-

matical graphs. In this context a graph is a set of
vertices (which are usually represented as dots)
and a set of edges (lines between the dots). One
large object that can be described in this way is
the World Wide Web; its 800 million pages are
the vertices of a graph, and links from one page
to another are the edges. A second example
comes out of Hollywood: The vertices are 225,000
actors, and an edge connects any two actors who
have appeared in a feature film together.

Although graph theory has a history of two
centuries and more, only in recent years has it
been applied routinely to structures like these,
with many thousands or millions of vertices and
edges. Studying such enormous graphs is by no
means easy. The Hollywood collaboration graph
just barely fits in the memory of a large computer.
The Web, a few orders of magnitude larger, re-
quires all the resources of the Internet to keep
track of its tentacles. Certain other graphs are even
bigger. The human acquaintanceship graph, with
a vertex for every person on earth and edges link-
ing all those who know each other, may never be
recorded beyond a few small, sampled regions.

Even when the vertices and edges of a large
graph can be catalogued in full detail, gaining a
deeper understanding of the graph’s structure still
calls for something more. What’s needed is a
mathematical theory or model. Typically this takes
the form of an algorithm for generating new
graphs that share certain properties of the graph
under examination: You understand the original
graph by building structures that resemble it. Part
II of this article looks at a few such models.

The Small World of Large Graphs
The various gigantic graphs that have lately at-
tracted notice share other properties besides
sheer size. In particular:

They tend to be sparse. The graphs have relatively
few edges, considering their vast numbers of ver-
tices. In a graph with n vertices, the maximum

number of edges is n(n–1)/2, or roughly n2/2. (I
consider here only “simple” graphs, as opposed to
multigraphs, where more than one edge can join a
pair of vertices.) In large real-world graphs, the
number of edges is generally closer to n than to
n2/2. For example, the Hollywood graph has 13
million edges connecting its 225,000 vertices. That
sounds like a lot, but it falls far short of the 25 bil-
lion edges in a “complete graph,” or “clique,”
where an edge joins every pair of vertices.

They tend to be clustered. In the World Wide Web,
two pages that are linked to the same page have
an elevated probability of including links to one
another. Likewise among friends, if two people
both know you, there’s a higher-than-normal
chance they also know each other. Thus the edges
of the graph are not distributed uniformly but
tend to form clumps or knots.

They tend to have a small diameter. The diameter
of a graph is the longest shortest path across it, or
in other words the length of the most direct route
between the most distant vertices. Diameter is fi-
nite only for connected graphs—those that are
all in one piece. A connected graph must have at
least n–1 edges, and its largest possible diameter
is n –1. At the opposite extreme, a complete
graph, with n2/2 edges, has a diameter of 1, since
you can get from any vertex to any other in a sin-
gle step. Graphs nearer to the minimum than the
maximum number of edges might be expected
to have a large diameter. Clustering could in-
crease the diameter further still, since edges used
up in creating local clumps leave fewer edges
available for long-distance connections. Never-
theless, the diameter of the Web and other big
graphs seems to hover around the logarithm of n,
which is much smaller than n itself.

Graphs with the three properties of sparseness,
clustering and small diameter have been termed
“small-world” graphs, after the familiar cocktail-
party experience of making a new acquaintance
in a distant city and discovering you have a friend
in common. The name was introduced by Dun-
can J. Watts and Steven H. Strogatz of Cornell
University, whose 1998 paper in Nature discussed
the Hollywood graph and several other exam-
ples. Watts, who has since moved on to the Santa
Fe Institute and MIT, describes the graphs more
fully in a recent book titled Small Worlds.
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Lattices and Random Graphs
In trying to understand very large small-world
graphs, two simplified models serve as useful
points of reference.

The simplest of all graph models are lattices—
highly regular graphs in which every vertex is
joined to a few neighbors. The term lattice brings
to mind a two-dimensional square grid, but a lat-
tice can have other geometries. The minimal lat-
tice is a one-dimensional structure, like a row of
people holding hands. Bending this linear lattice
around and joining the two ends creates a ring
lattice, or cycle. A nearest-neighbor ring lattice
with n vertices has n edges, and every vertex has
degree 2, meaning that two edges meet there.
When edges extend both to nearest neighbors
and to next-nearest neighbors, the ring has 2n
edges and vertices of degree 4.

How does the ring lattice perform as a model
of small-world graphs? Not terribly well. It is
suitably sparse, with just n edges in the nearest-
neighbor case, and there is a sense in which it is
highly clustered, since all the edges are “local.”
But the diameter is not small. The only way to
travel in a ring is to go from neighbor to neigh-
bor; the lattice is like a railroad line without an
express track. The diameter of the nearest-neigh-
bor ring is n/2, which is much larger than log n.

Whereas a lattice is a very orderly graph, the
other benchmark model is maximally random.
The graphs in this class were first studied around
1960 by the Hungarian mathematicians Paul
Erdo”s and Alfred Rényi. To build one of their
graphs, you start with a collection of n vertices
and no edges. Then you make a sweep through
the graph, considering every possible pairing of
vertices, and in each case you either draw an
edge with probability p or do nothing with prob-
ability 1–p. The outcome of this process is easy to
predict in the extreme cases: If p=0, the graph re-
mains edgeless, and if p=1, the graph becomes a
clique. Between the extremes, you can expect the
graph to have about pn2/2 edges, placed ran-
domly and independently.

Erdo”s and Rényi proved a number of interest-
ing results about these graphs. Most of the proofs
are statements about “almost every” random
graph; this sounds like a strangely vague manner
of speaking for mathematical discourse, but it
has a precise meaning. Saying that almost every
random graph has some property Q means that
as the size of the graph n goes to infinity, the
probability of Q approaches 1. For example,
Erdo”s and Rényi showed that if the edge proba-
bility p is greater than a certain threshold, then al-
most every random graph is connected. This
doesn’t mean you can’t construct disconnected
graphs if you set out to do so, but the random
process has no chance of producing them when n
approaches infinity.

As a model of small-world networks, the
Erdo”s-Rényi random graph has some strengths.
It can be made as dense or as sparse as necessary
just by adjusting the edge probability p. And the
diameter tends to be small (in some cases too
small). But Erdo”s-Rényi graphs show no tenden-
cy to form clusters. They cannot, since the edges
are placed independently, and neighbors of
neighbors are no more likely to be linked than
any other randomly chosen vertices.

Rewiring the Lattice
It’s not really surprising that the lattice model and
the Erdo”s-Rényi model fail to reproduce some
features of networks such as the human friend-
ship graph or the World Wide Web. After all,
these real-world networks are neither entirely reg-
ular nor entirely random. People generally know
their neighbors, but their circle of acquaintances is
not confined to those who live next door, as the
lattice model would imply. Conversely, links be-
tween pages on the Web are not created at ran-
dom, as the Erdo”s-Rényi process requires.

Watts and Strogatz deal with these failures by a
strategy that seems perfectly obvious once some-
one else has thought of it: They interpolate be-
tween the two models. They begin with a regular
lattice, such as a ring, and then “rewire” some of
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Figure 1. Watts-Strogatz model interpolates between a regular lattice (left) and a random graph (right). Randomly rewiring just a few edges
(center) reduces the average distance between nodes, L, but has little effect on the clustering coefficient, C. The result is a “small-world” graph.



the edges to introduce a measure of randomness.
Each edge in the original lattice is examined in
turn, and is either left in place or else is redirected
to another randomly chosen destination. The de-
cision to rewire an edge is governed by a proba-
bility p, which can be adjusted over the range from
0 to 1. If p is equal to 0, then nothing happens; the
lattice is unchanged. If p is equal to 1, the lattice is
transformed into a random graph much like a
product of the Erdo”s-Rényi procedure. The inter-
esting range lies between these extremes.

In their analysis of the rewired graphs, Watts
and Strogatz examined not the diameter—the
shortest path between the most distant vertices—
but the minimum path length L averaged over all
pairs of vertices. They observed an abrupt transi-
tion in L as the rewiring probability increased. L is
at its maximum in the regular lattice, but it falls
steeply when just a few of the edges are rewired.

As a measure of clustering in their hybrid
graphs, Watts and Strogatz defined a coefficient
C. To calculate C, list all the neighbors of a vertex,
count the edges that link those neighbors, and
divide by the maximum number of edges that
could possibly be drawn among the neighbors;
then repeat these operations for all the vertices,
and take the average. In contrast to the path
length L, the clustering coefficient remains high
until the rewiring probability is rather large.
Hence over a wide range of p values, the graph is
dominated by local connections between nearby
nodes, but the few shortcuts provide efficient
long-distance connections.

Watts and Strogatz tested their model against
the Hollywood graph, which has L=3.65 and
C=0.79. They created a rewiring model with the
same number of vertices and edges and the same
average degree. The model has an L value of 3.9
and a C coefficient in the range from 0.61 to 0.84,
in good agreement with the actors’ graph. The
Erdo”s-Rényi model cannot do nearly as well: The

path length of L=2.99 is reasonably close, but the
cliquishness score, at C=0.00027, is too small by
three orders of magnitude.

Watts and Strogatz suggest several more appli-
cations of their model to natural or technological
graphs, including a part of the U.S. electric power
grid and the nervous system of the nematode
worm Caenorhabditis elegans. Again, model and
observation are consistent, although the agree-
ment is not as impressive as it is with the Holly-
wood graph. More recently, Lada A. Adamic of
the Xerox Palo Alto Research Center has shown
that the Web also fits the small-world model.

As it happens, Watts and Strogatz were not the
first to explore the effect of short-circuiting a ring
graph. In the 1980s, Fan R. K. Chung (now at the
University of California, San Diego), in collabo-
rations with Michael R. Garey of AT&T Labora-
tories and Béla Bolobás of the University of
Memphis, studied various ways of adding edges
to cyclic graphs. They found cases where the di-
ameter is proportional to log n.

Finding Your Way in a Small World
Although randomly rewired connections can dra-
matically shrink the diameter of a lattice, the
shortcuts are not much use if you don’t know
where they are. Without an aerial view, how do
you find the best path to an unknown destina-
tion? The question has recently been taken up by
Jon Kleinberg of Cornell University. His answer
leads to a refinement of the Watts-Strogatz model.

Kleinberg describes his model in the context of
the social-network experiments carried out by
Stanley Milgram in the 1960s. These experiments
gave the first clear evidence of a small-world
structure in the acquaintanceship graph. Milgram
prepared envelopes addressed to a person in the
Boston area and asked volunteers in Nebraska to
pass the envelopes along to any acquaintance
who might be able to get them closer to their des-

106 American Scientist, Volume 88

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.005 0.01 0.05 0.1 0.5 1
rewiring probability

ch
ar

ac
te

ris
tic

 p
at

h 
le

ng
th

characteristic
            path length

cl
us

te
rin

g 
co

ef
fic

ie
nt

clustering
      coefficient

Figure 2. As the probability of rewiring increases in the Watts-Strogatz model, the characteristic path length falls off
long before the clustering coefficient drops. Results are from 2,000 random graphs, each with 300 vertices and 900 edges.



tination. Many of the envelopes reached the re-
cipient after passing through the hands of just a
few intermediaries. What is surprising about this
outcome is not that short paths exist but that peo-
ple were able to find them so easily.

Kleinberg’s model of this process begins with a
two-dimensional square lattice, where each node
is joined to its four nearest neighbors. Then long-
distance interconnections are added, but not pure-
ly at random. For each vertex, all the possible des-
tinations of a shortcut link are assigned a rank
based on their distance from the source vertex.
The probability of choosing a vertex at distance d
is proportional to d–r, where r is an additional pa-
rameter of the model. If r is set equal to 0, then
destinations at all distances are chosen with uni-
form probability, and the model is just a two-di-
mensional version of the Watts-Strogatz model. If
r is large, then only nearby destinations have any
appreciable chance of being chosen, and the origi-
nal structure of the lattice is hardly altered. The
crucial parameter value turns out to be r=2, where
the probability obeys an inverse-square law. 

Graphs with r=2 are easy to get around in not
because they have the smallest diameter (they
don’t) but because an algorithm exists for finding
a short path through them. The algorithm is a
simple “greedy” one. If you are asked to find a
route from node a to node b, list all the edges em-
anating from a, and choose the one that takes you
closest to b, as measured by lattice distance; then
repeat the same procedure from this intermediate
point, and continue until you reach the destina-
tion. Kleinberg proves that this algorithm is at its
most efficient when the spectrum of edge lengths
is determined by r=2, and also that no other al-
gorithm performs better at any other value of r.
When r=0, paths with fewer steps exist, but there
is no way to find them; at large r, the optimum
route is unlikely to be much shorter than a path
following strictly local lattice links.

Is there any evidence that graphs we meet in
everyday life have the convenient properties of a
lattice augmented with inverse-square shortcuts?
The success of Milgram’s experiments might be
taken to suggest that the acquaintanceship graph
has such a structure, but the data are scanty. And
the model is not easy to adapt to other contexts. It
requires that a graph have a geometric sub-
strate—some way of measuring distance other
than counting edges in the graph itself. This kind
of metric does exist in Milgram’s experiments:
People in Nebraska know which of their friends
are nearer to Boston. Many other graphs, howev-
er, have no such geometric structure. The Web of-
fers few clues to proximity; when you go search-
ing for a site by clicking on links, you seldom
know whether you’re getting warmer or cooler.

Power Laws
Sparseness, clustering and small diameter are not
the only distinctive properties of large real-world
graphs. Another trait that has attracted notice is

the degree sequence—the number of vertices with
each possible number of edges from 0 to n–1. 

A lattice has a simple degree sequence. All the
vertices have the same number of edges, and so a
plot of the degree sequence consists of a single
sharp spike. Any randomness in the graph broad-
ens this peak. In the limiting case of an Erdo”s-
Rényi graph, the degree sequence has a Poisson
distribution, which falls off exponentially away
from the peak value. Because of this exponential
decline, the probability of finding a vertex with k
edges becomes negligibly small for large k. 

There is evidence that real graphs such as the
Web behave differently. The distribution of de-
grees is described by a power law rather than an
exponential. That is, the number of vertices of de-
gree k is given not by e–k (an exponential) but by
k–γ (a power law, where the power γ is a positive
constant). The power-law distribution falls off
more gradually than an exponential, allowing for
vertices of very large degree.

Several research groups have independently
discovered this property of the degree sequence.
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Figure 3. Model of Barabási, Albert and Jeong grows a graph by
adding both vertices and edges. In the example shown here, each
stage adds one new vertex and two new edges (yellow).



A group that includes Kleinberg and several
workers from the IBM Almaden Research Center
found evidence of a power law in the Web, and
so did Adamic and Bernardo A. Huberman of
the Xerox Palo Alto Research Center. Michalis
Faloutsos, Petros Faloutsos and Christos Falout-
sos observed power-law relationships in the
hardware substrate of the Internet.

Still another group that recognized a power
law in the statistics of the Web consists of Albert-
László Barabási of Notre Dame University and
his colleagues Réka Albert and Hawoong Jeong.
Barabási, Albert and Jeong set out to estimate the
diameter of the Web (or, strictly speaking, the
characteristic path length), and found that two
randomly chosen pages are about 19 mouse-
clicks apart. In the course of this analysis they
tabulated the degree sequence, observing that the
probability that a page has links to k other pages
is approximately k –2.45; the probability that k
pages point to a given page is k–2.1.

To explain the power-law degree sequence,
Barabási, Albert and Jeong have proposed a new
random graph model. They argue that other
models fail to take into account two important
attributes of  the Web. In the first place, the Web
is continually sprouting new pages, but most
models are static: Although edges can be added
or rearranged, the number of vertices never
changes. Second, both the Erdo”s-Rényi and the
Watts-Strogatz processes assume uniform proba-
bilities when creating new edges, but this is not
very realistic either. Barabási and his coworkers
note that Web pages that already have many
links are more likely to acquire still more links.

Like the Erdo”s-Rényi model, the Barabási mod-
el starts with n vertices and no edges, but the evo-
lution is different. At every step the graph adds a
single new vertex and m edges; all the new edges
link the new vertex to some of the vertices already
present. The probability that a given vertex will
receive a new edge is proportional to the share of
the total set of edges that the vertex already owns;
hence the well-connected become still better-con-
nected. After t steps, the graph has n + t vertices
and m×t edges. Growing according to these rules,
the graph attains a statistical steady state: The
shape of the distribution of node degrees does not
change over time. The distribution is described
by a power law with an exponent of 3; in other
words, the probability of finding a vertex with k
edges is proportional to k–3.

Barabási and his colleagues have tested their
model on several large graphs, including those
discussed by Watts and Strogatz—the Holly-
wood graph, an electric power grid and the neur-
al network of C. elegans. They find that both of
the novel features of the model are essential to its
success; eliminating either growth in the vertex
set or preferential attachment of edges impairs
the model’s performance.

The straightforward way that the growth of a
Barabási graph mimics the growth of the Web

gives the model strong intuitive appeal, and yet
the correspondence of theory and observation is
not quite as close as one might hope. As noted
above, the actual γ exponents for the Web are
about 2.45 for outward links and 2.1 for inward
links, significantly different from the model’s
prediction of 3. For some other graphs, such as
the C. elegans network, the discrepancy is even
greater. Various adjustments could tune the mod-
el for a better match, but they inevitably sacrifice
some of its simplicity.

Alpha-Beta Graphs
The entire class of random graphs with a power-
law degree sequence has been analyzed by
Chung, William Aiello of AT&T Laboratories and
Linyuan Lu of the University of Pennsylvania.
Their model organizes all such graphs according
to the values of two parameters, α and β. 

When the degree sequence of a power-law
graph is plotted on logarithmic scales, it forms a
straight line. The parameters α and β specify this
line; α is the point where the line intercepts the y
axis, and β is the line’s slope (or rather the nega-
tive of the slope). Thus α is the logarithm of the
number of vertices of minimal degree, and β is
the rate at which the logarithm of the number of
vertices decreases as the degree increases. More
formally, if y(k) is the number of vertices of degree
k, then the family of graphs defined by the model
consists of all those graphs that satisfy the equa-
tion y(k) = eα/kβ, subject to the constraint that both
k and y(k) must be integers. For any fixed values
of α and β, y(k) specifies a finite set of graphs; a
random alpha-beta graph is simply one chosen
with uniform probability from this set.

The alpha-beta model is somewhat different
from the models discussed above in that it does
not directly specify the size of the graph in terms
of n, the number of vertices. Another difference is
that multiple edges between vertices are allowed,
and so are “self-loops,” or edges that start and end
on the same vertex. (Both of these features are pre-
sent in some natural graphs, such as the Web.)

Aiello, Chung and Lu explore how the proper-
ties of alpha-beta graphs vary as a function of β. A
larger value of β corresponds to a steeper slope in
the power law and hence to fewer nodes of large
degree. If β is greater than a threshold value of ap-
proximately 3.4785, almost every alpha-beta
graph consists of many small, disconnected com-
ponents; there are not enough edges to hold the
graph together. If β is greater than 1 but less than
3.4785, almost every graph has a giant compo-
nent—a single large, connected piece that in-
cludes most of the vertices and edges in the
graph. When β is less than 1, high-degree vertices
are so abundant that almost every graph consists
of one connected piece.

Aiello, Chung and Lu developed their model
with a specific family of real-world graphs in
mind, namely “call graphs” recording long-dis-
tance telephone traffic. As described in Part I, a
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call graph has telephone numbers as its vertices,
and an edge is drawn between two vertices
whenever a call is placed between the corre-
sponding numbers. Analysis of an actual call
graph shows that the degree sequence is not quite
a perfect power law, and yet the model captures
important features of the graph. The best approx-
imation has parameter values of roughly α =17
and β=2.1. Since β lies between 1 and 3.4785, the
model predicts that the graph is not connected
but does have a giant component.

Graph Practice, in Theory
It may seem remarkable that the abstract and
austere formalism of graph theory would prove
useful in explaining such worldly phenomena as
the architecture of the World Wide Web or the
casting of Hollywood films or patterns of tele-
phone calls. But graph theory is a branch of
mathematics that has never been afraid to get its
hands dirty with applications. Early on, it had
close and fruitful encounters with organic chem-
istry and electrical engineering.

In another sense, though, the sudden bloom-
ing of graphs—the tendency to see them every-
where we look—is indeed new and noteworthy.
For a long time, science has preferred to see the
world through a grid of Cartesian coordinates,
organizing everything around us according to
row and column, rank and file, latitude and
longitude. Although there have always been ex-
ceptions to this rectilinear prejudice—notably the
treelike structures of taxonomists and grammari-
ans—the simplicity of lattices has been hard to
resist. And both lattices and trees have a conve-
nient property that physicists call locality. The
only way to move through a lattice or a tree is to
crawl from one node to the next. There is no ac-
tion at a distance; there are no secret wormholes
connecting distant parts of the universe.

Graphs are a generalization of both lattices and
trees. They admit more-flexible arrangements
and less-regular connections in the way the
world is put together. In graphs the principle of
locality can be violated, as the shortcuts in the
Watts-Strogatz model make explicit. Such subter-
ranean channels make the world a harder place

to comprehend, but perhaps a more interesting
place to inhabit.
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