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What is the diameter of the World Wide
Web? The answer is not 7,927 miles,
even though the Web truly is World

Wide. According to Albert-László Barabási, Reka
Albert and Hawoong Jeong of Notre Dame Uni-
versity, the diameter of the Web is 19.

The diameter in question is not a geometric dis-
tance; the concept comes from the branch of math-
ematics called graph theory. On the Web, you get
from place to place by clicking on hypertext links,
and so it makes sense to define distance by count-
ing your steps through such links. The question is:
If you select two Web pages at random, how many
links will separate them, on average? Among the
800 million pages on the Web, there’s room to wan-
der down some very long paths, but Barabási et al.
find that if you know where you’re going, you can
get just about anywhere in 19 clicks of the mouse.

Barabási’s calculation reflects an interesting
shift in the style and the technology of graph
theory. Just a few years ago it would have been
unusual to apply graph-theoretical methods to
such an enormous structure as the World Wide
Web. Of course just a few years ago the Web
didn’t exist. Now, very large netlike objects seem
to be everywhere, and many of them invite
graph-theoretical analysis. Perhaps it is time to
speak not only of graph theory but also of graph
practice, or even graph engineering.

Connect the Dots
The graphs studied by graph theorists have noth-
ing to do with the wiggly-line charts that plot
stock prices. Here is a definition of a graph, in all
its glory of abstraction: A graph is a pair of sets, V
and E, where every element of E is a two-member
set whose members are elements of V. For exam-
ple, this is a graph: V = {a, b, c}, E = {{a, b}, {a, c}}.

So much for definitions; most of us prefer to
think of our graphs graphically. And in fact every-
one knows that what graph theory is really about
is connecting the dots. The set V is made up of
vertices (also known as nodes), which are drawn
as dots. The set E consists of edges (also called
arcs, links or bonds), and each edge is drawn as a

line joining the two vertices at its end points. Thus
the graph defined abstractly above looks like this:

Most of the time, a picture is worth at least a
thousand sets, and yet there are reasons for retain-
ing the more formal definition. When you look at
a graph drawing, it’s hard not to focus on the
arrangement of the dots and lines, but in graph
theory all that matters is the pattern of connec-
tions: the topology, not the geometry. These three
diagrams all depict the same graph:

Each of the graphs sketched above is in one
piece, but not all the vertices in a graph have to be
joined by edges; disconnected components can be
parts of a single graph. “Multigraphs” are allowed
to have multiple edges connecting the same pair of
vertices. And some graphs have self-loops: edges
whose two ends are both attached to the same ver-
tex. Another variation is the directed graph, where
each edge can be traversed in only one direction.

Euler to Erdo”s
Graph theory got its start in the 18th century,
when the great Swiss-born mathematician Leon-
hard Euler solved the puzzle of the Königsberg
bridges. At the time, Königsberg (now Kalinin-
grad) had seven bridges spanning branches of
the Pregel River. The puzzle asked whether a
walk through the city could cross each bridge ex-
actly once. The problem can be encoded in a
graph (actually a multigraph) by representing the
land areas as vertices and the bridges as edges:

Euler showed that you can answer the question by
tabulating the degree, or valency, of each vertex—
the number of edges meeting there. If a graph has
no more than two odd vertices, then some path
traverses each edge once. In the Königsberg graph
all four vertices are odd.
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The techniques of graph theory soon proved
useful for more than planning a stroll along the
Pregel. The German physicist Gustav Kirchoff
analyzed electric circuits in terms of graphs, with
wires as edges and junction points as vertices.
Chemists found a natural correspondence be-
tween graphs and the structural diagrams of
molecules: An atom is a vertex, and an edge is a
bond between atoms. Graphs also describe com-
munications and transportation networks, and
even the neural networks of the brain. Other ap-
plications are less obvious. For example, a chess
tournament is a graph: The players are nodes,
and matches are edges. An economy is also a
graph: Companies or industries are nodes, and
edges represent transactions.

In the 20th century graph theory has become
more statistical and algorithmic. One rich source
of ideas has been the study of random graphs,
which are typically formed by starting with iso-
lated vertices and adding edges one at a time.
The master of this field was the late Paul Erdo”s.
With his colleague Alfred Rényi, Erdo”s made the
central finding that a “giant component”—a con-
nected piece of the graph spanning most of the
vertices—emerges suddenly when the number
of edges exceeds half the number of vertices.

The recent work on the World Wide Web and
other very large graphs is also statistical and al-
gorithmic in nature, and it has close ties to the
Erdo”s-Rényi theory of random graphs. But there
is a new twist. Many of these huge graphs are
not deliberate constructions but natural artifacts
that have grown through some accretionary or
evolutionary process. The Web, in particular, is
an object no one designed. On close examination,
the structure of such graphs seems neither en-

tirely random nor entirely regular. Understand-
ing the balance of order and chaos in these
graphs is one of the aims of the current under-
takings. A more basic goal is simply finding com-
putational techniques that will not choke on a
graph with 108 nodes. 

Reach Out and Touch Everyone
A good example of a really big graph comes from
telephone billing records. The vertices of this “call
graph” are telephone numbers, and the edges are
calls made from one number to another. James M.
Abello of the AT&T Shannon Laboratories in
Florham Park, New Jersey, has studied the evolu-
tion of the graph as calls accumulate over a period
of days. In one 20-day period the graph grew to
have 290 million vertices and 4 billion edges.

The call graph is actually a directed multi-
graph—directed because the two ends of a call
can be distinguished as originator and receiver, a
multigraph because a pair of telephones can ex-
change more than one call. For ease of analysis,
however, sets of multiple edges are collapsed into
a single edge, and the graph is treated as if it
were undirected.

The first challenge in studying the call graph is
that you can’t swallow it whole. Even a computer
with six gigabytes of main memory cannot hold
the full graph. Under these conditions most algo-
rithms are ruinously inefficient, because pieces of
the graph have to be repeatedly shuttled between
memory and disk storage. The call graph has there-
fore become a test-bed for algorithms designed to
run quickly on data held in external storage.

A one-day call graph analyzed by Abello and
his colleagues P. M. Pardalos and M. G. C. Resende
has 53,767,087 vertices and 170 million edges. It is
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Figure 1. Links between a few sites on the World Wide Web create a dense tangle of vertices and edges. The graph was
drawn by a program called Internet Cartographer, published by Inventix Software. (Image courtesy of Kiva Korsak.)



not a connected graph but has 3.7 million sepa-
rate components, most of them tiny; three-fourths
of the components are pairs of telephones that
called only each other. Yet the graph also has one
giant connected component, with 44,989,297 ver-
tices, or more than 80 percent of the total. The di-
ameter of the giant component is 20, which im-
plies that any telephone in the component can be
linked to any other through a chain of no more
than 20 calls. The emergence of a giant component
is characteristic of Erdo”s-Rényi random graphs,
but the pattern of connections in the call graph is
surely not random. Some models that might de-
scribe it will be taken up in Part II of this article, to
appear in the March–April issue.

Abello and his colleagues went hunting within
the call graph for structures called cliques, or
complete graphs. They are graphs in which every
vertex is joined by an edge to every other vertex.
Identifying the largest such structure—the max-
clique—is computationally difficult even in a
graph of moderate size. In the call graph, the
only feasible strategy is a probabilistic search that
finds large cliques without proving them maxi-
mal. Abello et al. found cliques spanning as many
as 30 vertices. Remarkably, there are more than
14,000 of these 30-member cliques. Each clique
represents a distinct group of 30 individuals in
which everyone talked with everyone else at
least once in the course of a day.

People Who Know People
Some of the most interesting large graphs are
those in which we are the vertices. These social
graphs are associated with the phrase “six degrees
of separation,” popularized by a 1990 play of that
title and a later film, both written by John Guare.
The idea is that the acquaintanceship graph con-
necting the entire human population has a diame-
ter of six or less. Guare attributes this notion to
Guglielmo Marconi, who supposedly said that
wireless telegraphy would so contract the world
that any two people could be linked by a chain of
5.83 intermediaries. Did Marconi really make such
a statement? I have been unable to find any evi-
dence. (And the two decimal places of precision
do nothing to increase my faith in the number’s
authenticity.)

Even if Marconi did have ideas about the ac-
quaintanceship graph, they were unknown to
those who later took up the subject. In the 1950s
and 60s Anatol Rapoport based a theory of social
networks on the idea of random graphs. He
showed that any bias in the random placement of
edges tends to reduce the overall connectivity of
the graph and increases its diameter. Thus social
structures that bring people together in clusters
have the side effect of pushing the clusters farther
apart. On the basis of this mathematical result, the
sociologist M. S. Granovetter argued that what
holds a society together are not the strong ties
within clusters but the weak ones between people
who span two or more communities.

Also in the 1950s, Ithiel de Sola Pool and Man-
fred Kochen tried to estimate the average degree
of the vertices in the acquaintanceship graph and
guessed that the order of magnitude is 1,000. This
high density of interpersonal contacts led them to
conjecture that anyone in the U.S. “can presum-
ably be linked to another person chosen at ran-
dom by two or three intermediaries on the aver-
age, and almost with certainty by four.”

This “small-world hypothesis” was put to the
test a decade later in a famous experiment by
Stanley Milgram. Packets addressed to an indi-
vidual in the Boston area were given to volun-
teers in Nebraska and Kansas. Each volunteer
was directed to pass the packet along to any per-
sonal acquaintance who might get it closer to its
intended recipient. Instructions within the packet
asked each person who received it to follow the
same procedure. For the packets that made it all
the way to their destination, the mean number
of intermediary nodes was 5.5.

Milgram’s experiment was ingenious, and yet
it did not quite establish that everyone on the
planet is within six handshakes of everyone else.
In the first place, the reported path length of 5.5
nodes was an average, not a maximum. (The
range was from 3 to 10.) Two-thirds of the pack-
ets were never delivered at all. Furthermore, al-
though Nebraska and Kansas may seem like the
ends of the earth from Massachusetts, the global
acquaintanceship graph probably has a few back-
waters even more remote. And if Milgram’s re-
sult is not an upper bound on the diameter of the
graph, neither is it a lower one: There is no rea-
son to believe that all the participants in the
study found the shortest possible route.

Certain subgraphs of the acquaintanceship
graph have been explored more thoroughly. The
prototype is the “collaboration graph” centered on
the graph theorist Paul Erdo”s. In this graph dis-
tance from Erdo”s’s node is termed the Erdo”s num-
ber. Erdo”s himself has an Erdo”s number of 0. All
those who co-authored a paper with him have
Erdo”s number 1. Those who did not write a joint
paper with Erdo”s but who are co-authors of a co-
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Figure 2. Diameter of a graph is the length of the short-
est path between the most distant vertices. In this graph
no pair of vertices is separated by more than four edges.



author have Erdo”s number 2, and so on. The
graph built up in this way, by adding concentric
layers of co-authors, can be viewed as a compo-
nent of a larger graph with a node for every con-
tributor to the literature of science. Although the
graph as a whole cannot be connected—if only be-
cause of “soloists” who never collaborate with
anyone—the connected component centered on
Erdo”s is thought to encompass almost all active
scientists and to have a small diameter.

Another collaboration graph has movie actors
instead of scientists at the vertices, with the cen-
tral role given to Kevin Bacon. Because feature
films are a smaller universe than scientific publi-
cations, the structure of this “Hollywood graph”
can been determined in greater detail. If the
records of the Internet Movie Database can be
taken as complete and definitive, then the Holly-
wood graph has 355,848 vertices, representing
actors who have appeared in 170,479 films.

Brett C. Tjaden and Glenn Wasson of the Uni-
versity of Virginia maintain a Web site (The Oracle
of Bacon) that tabulates Bacon numbers. Because
the entire graph is known, there is no need to
speculate about whether or not it is connected or
what its diameter might be. The questions can be
answered directly. The Hollywood graph includes
exactly one person with Bacon number 0 (that
one’s easy to guess); there are 1,433 with Bacon
number 1; another 96,828 have Bacon number 2,
and 208,692 occupy nodes at Bacon number 3. But
because the number of actors is finite, the rings
around Bacon cannot continue expanding. At Ba-
con number 4 there are 46,019 actors, then 2,556 at
distance 5, and 252 at Bacon number 6. Finally
there are just 65 actors who require seven inter-
mediaries to be connected to Kevin Bacon, and
two exceptionally obscure individuals whose Ba-
con number is 8. (Finding any actor in tiers 7 or 8
will earn you a place in the Oracle’s hall of fame.)

A new attempt to construct a major piece of

the global acquaintanceship graph is now under
way at a Web site called sixdegrees.com, founded
by Andrew Weinreich. Here you are invited to
fill out a form listing the e-mail addresses of your
friends, who will be invited to create database
entries of their own. Thus, you should be able to
explore the social graph as seen from your own
position in it—everyone gets a chance to be
Kevin Bacon or Paul Erdo”s. When I last checked,
sixdegrees.com had 2,846,129 members. Statistics
on the structure of the evolving graph have not
been published, but a review by Janelle Brown in
Salon magazine offers some clues. Brown reports:
“I, for example, have fourteen contacts in my in-
ner circle, 169 in my second degree, 825 in my
third, 3,279 in my fourth, 10,367 in my fifth and
26,075 in my sixth.” The fact that these numbers
continue increasing and have not begun to ap-
proach the total size of the graph suggests that a
giant connected component has not yet emerged
at sixdegrees.com.

The Width of the Web
As an object of study for graph theorists, the
World Wide Web has the advantage that it comes
already encoded for computer analysis. The ver-
tices and edges do not have to be catalogued; any
computer attached to the Internet can navigate
through the graph just by following links from
node to node. Like the AT&T call graph, the Web
is a directed multigraph, but many analyses ig-
nore these complications and treat the Web as if it
were a simple, undirected graph.

To estimate the diameter of the Web, Barabási
and his colleagues at Notre Dame did not visit
every node and traverse every link; they studied a
small corner of the Web and extrapolated to the
rest of the graph. The Barabási group used a soft-
ware “robot” to follow all the links on a starting
page, then all the links on each page reached from
that page, and so on. This is the same technique
employed by search engines to index the Web, but
search engines are never exhaustive; they are
tuned to catalogue documents of interest to peo-
ple, not to measure the connectivity of a graph.

Initially, the Notre Dame robot looked only at
the nd.edu Internet domain and gathered infor-
mation on 325,729 documents and 1,469,680 links
(about 0.3 percent of the Web). The key step in
the analysis of these data was to calculate the
probability that a page has a given number of in-
ward and outward links. Barabási and his col-
leagues found that both probabilities obey a
power law. Specifically, the probability that a
page has k outward links is proportional to k–2.45,
and the probability of k inward links is given by
k–2.1. The power law implies that pages with just
a few links are the most numerous, but the prob-
ability of larger numbers of links falls off gradu-
ally enough that pages with several hundred or
several thousand links are to be expected.

Although nodes of very high degree are rare,
they have an important effect on the connectivity of
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Figure 3. Social graph records bonds of friendship among 450 people
in Canberra, Australia. The network of social contacts was document-
ed by Alden S. Klovdahl of Australian National University. Image
was created with View_Net, written by Klovdahl and R. H. Payne.



the Web. Such nodes shrink the graph by providing
shortcuts between otherwise distant vertices. For
the nd.edu domain, Barabási et al. measured an av-
erage diameter of 11.2 edges; the power-law model
predicted 11.6. Extrapolating to the Web as a whole
yielded a diameter of about 19 links.

The diameter of the graph is an important sta-
tistic when you are trying to find something on
the Web. A blind, random search would typically
have to examine half the 800 million documents
before stumbling on the right one. But the Notre
Dame result suggests that from any reasonable
starting point, there should be a path to the target
page crossing only about 19 links. Barabási et al.
remark: “The relatively small value of [the diam-
eter] indicates that an intelligent agent, who can
interpret the links and follow only the relevant
one, can find the desired information quickly by
navigating the web.” (But finding the relevant
link is not always easy! When I tried searching
for paths between randomly chosen pages, I
came away doubting that I qualify as an intelli-
gent agent.)

Rare nodes of high degree also play a role in
other graph-theoretical analyses of the Web. One
group doing such work calls itself the Clever pro-
ject. The vertices in the Clever collaboration graph
include Jon Kleinberg of Cornell University and
Prabhakar Raghavan and Sridhar Rajagopalan of
the IBM Almaden Research Center. The Clever
group draws attention to two special kinds of
nodes in the Web. “Hubs” are nodes of high out-
degree—pages that point to many other pages.
“Authorities” have high in-degree—they are
pointed to by many other pages, and especially by
hubs. Typical hubs are lists of personal bookmarks
or pages from directory services such as Yahoo.
An authority is a Web page that many people find
interesting enough to create a link to it. 

The Clever algorithm defines hubs and au-
thorities by an iterative feedback process. An ini-
tial scan of the Web identifies pages of high out-
degree and high in-degree, which form the initial
sets of candidate hubs and authorities. Then
these sets are refined by a recursive procedure
that discards a hub candidate unless many of its
outward links point to pages that are members of
the authority set; likewise authorities are weeded
out unless they are pointed to by many of the
hubs. Repeated application of this algorithm nar-
rows the focus to those hubs and authorities that
are most densely connected to one another.

In one project, members of the Clever group
have employed links between hubs and authori-
ties to identify more than 100,000 “emerging com-
munities”—collections of Web sites that share
some common theme. For example, the survey
found pages associated with Australian fire
brigades and with Turkish student organizations
in the U.S. Remarkably, the communities were
identified by a method that did not rely in any
way on the content of the Web pages; the algo-
rithm looked only at the pattern of connectivity.

Similar principles are at work in a Web search
engine called Google, developed by Sergey Brin
and Lawrence Page of Stanford University. Google
employs a conventional text-based scan to create
an index of the Web’s content, but the pages rec-
ommended in response to a query are ranked ac-
cording to information from the link analysis. A
page is rated highly if many pages point to it, and
if many other pages point to those pages, and so on.

Measuring properties of a graph such as the di-
ameter or the distribution of vertex degrees is a
first step toward understanding its structure. The
next step is to develop a mathematical model of
the structure, which typically takes the form of an
algorithm for generating graphs with the same
statistical properties. Such models of very large
graphs will be the subject of Part II of this article.
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