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T
he French painter Georges Seurat had a
lively interest in the sciences. His technique
of pointillism—painting with tiny flecks of

pure colors—was inspired by theories of light
and perception that trace back to James Clerk
Maxwell and Hermann von Helmholtz, among
others. Unfortunately for Seurat, the scientific un-
derpinnings of pointillism did nothing to soften
criticism of his paintings when he exhibited them
in the 1880s, but his ideas have certainly been
vindicated since then. A century later we are all
pointillists. We tend to see every image as a col-
lection of little dots.

Decomposing a picture into dots seems natur-
al today because that’s the way images are dis-
played on a computer monitor or a television
screen—by lighting up spots of phosphor that
glow red, green and blue. Printed images are just
as dotty. Under a magnifying lens, the pictures in
this magazine dissolve into dots of cyan, magen-
ta, yellow and black. Ink-jet printers spray simi-
lar arrays of microscopic colored droplets.

From printing and displaying pictures as dots,
it’s an easy step to storing them that way inside
the computer—as rows and columns of “pixels,”
or picture elements. Photographs made with a
digital camera are born as pixel arrays; satellite
imagery and other kinds of scientific data also
arrive in this format; conventional photographs
can be converted into pixels by a scanner or even
by a fax machine. In the case of a monochrome
image, each pixel is represented in computer
memory by a number that gives the pixel’s
brightness on a scale from black to white. For col-
or images, a pixel typically consists of three or
four numbers, encoding the intensities of the
component colors. A snapshot-size color image
might have a million pixels and fill up a few
megabytes of computer memory.

With the prevalence of digital imaging, the rec-
tangular array of pixels begins to seem like the
one and only way of representing graphic infor-
mation; you can’t look at a picture without seeing
spots before your eyes. But there are many alter-

natives to pixels, with interesting and useful
properties. Some of the pixelless representations
are more compact; some preserve information
about the structure and meaning of an image;
some are easier to revise or edit; some can be dis-
played at various resolutions without loss of
quality. Perhaps most intriguing, some of the al-
ternatives could give hints about the way the
brain stores and interprets images.

Straightedge and Compass
Pixels were not always the universal building
blocks of computer graphics. In the 1960s, many
computer display screens worked on another
principle altogether, called vector graphics. In-
stead of scanning a beam over the entire surface of
the screen in closely spaced parallel lines (the
raster pattern of modern displays), the beam was
steered from point to point as needed to create a
line drawing. For example, directing the beam
from the x,y coordinates 0,0 to the point 6,0, then
to 0,6 and finally back to 0,0 would draw an
isosceles right triangle. The corresponding hard-
copy device was the pen plotter, a kind of auto-
mated Etch-A-Sketch in which a motor-driven pen
zipped from point to point over a sheet of paper.

Specialized hardware for vector graphics is
now a rarity, and yet the underlying idea has not
gone away. Even though modern displays and
printers are raster devices, many computer pro-
grams adopt the vector format as an internal data
structure for graphic objects. Computer-aided-
design software works this way; an architect’s
rendering of a building is made up of lines, not
pixels. Often, vector-based programs are referred
to as “drawing” software, whereas pixel-based
programs are for “painting.” (To those who work
in the graphic arts, the difference between vec-
tors and pixels is the difference between Adobe
Illustrator and Adobe Photoshop.)

Although the term “vector graphics” suggests
drawing with straight lines, modern programs of-
fer a compass as well as a straightedge, and even
a French curve. Indeed, vector systems can depict
the entire universe of planar Cartesian geome-
try—any form described by equations in x and y.
Linear equations yield lines or line segments; qua-
dratic equations describe circles and other conic
sections; cubic equations define a particularly im-

202 American Scientist, Volume 87

COMPUTING SCIENCE

SEEING BETWEEN THE PIXELS

Brian Hayes

Brian Hayes is a former editor of American Scientist. From
January to June 1999 he is Journalist in Residence at the
Mathematical Sciences Research Institute in Berkeley.
Internet: bhayes@amsci.org.



portant class of curves are called splines, after the
flexible strips of metal or wood that were once
used to outline smooth curves in shipbuilding.

At least one common vector-graphics system
evolved from a language for driving pen plot-
ters; it is HP-GL, the Hewlett-Packard Graphics
Language. But the most widespread notation for
vector graphics is Postscript, developed by
Adobe Systems. Every letter on this page was
created as a sequence of line and arc and spline
commands in Postscript.

Postscript is a versatile language that can ac-
commodate pixel-based images as well as vec-
tors. It is also a fully equipped programming lan-
guage, with facilities for iteration, recursion and
defining procedures. One consequence is that a
finite expression in Postscript can describe a geo-
metric object of unbounded complexity, such as
the Hilbert curve, a one-dimensional line so con-
torted that it fills a two-dimensional area. (But is
the Postscript encoding a representation of the
image or merely a program that when executed
generates a representation?)

An important advantage of vector formats is
that geometric objects retain their identity and
structure. In a vector-based drawing program
you can select a line and alter its thickness or col-
or. These operations are much harder with an
image made up of nothing but pixels, where the
concept of “line” does not exist. In many cases
vector drawings are also more compact than pix-
el-based images. And a final virtue of vector for-
mats is that the same drawing can be displayed
or printed at any resolution. For pixel images, the

only way to show finer detail is to squeeze in
more pixels, but the equations that define vector
forms are mathematical objects of potentially un-
limited precision. The same Postscript letterforms
can be rendered on a monitor screen at less than
100 dots per inch or on film at more than 1,000
dots per inch.

Brushstrokes
Vector formats are ideal for mechanical or geo-
metric drawings, but it’s hard to imagine that Seu-
rat would have been very happy working in vec-
tor mode. On the other hand, he might have been
delighted to try a form of computer painting de-
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Figure 1. La Parade de Cirque, which Georges Seurat painted in 1887–88, is composed entirely of colored dots, much
like the pixels of modern digital images. The painting is now in the Metropolitan Museum of Art in New York.

Figure 2. Detail of La Parade shows Seurat’s pointillist
technique. Inspired by optical science, he believed col-
ors should mix in the eye, not on the artist’s palette.



vised by Paul Haeberli of Silicon Graphics. Hae-
berli’s program captures something of the kines-
thetic experience of painting, and in skilled hands
the program can produce distinctly painterly re-
sults. It achieves this through a strategy that seems
perfectly obvious once someone else has thought
of it: The program represents a painting not as an
array of pixels or as a collection of lines or splines
but as a sequence of brushstrokes.

To paint with Haeberli’s program you begin
with an existing template image in pixel format,
and next to it a blank canvas. As you run the
mouse over the canvas, the program chooses a
color from the corresponding region of the tem-
plate, and paints a brushstroke in that color on
the new canvas. But the brushstrokes do not
merely reproduce the pixel structure of the tem-
plate; brushes have numerous adjustable prop-
erties, including size, shape, orientation and tex-
ture. Indeed, the computerized brushes can do
things that no brush of pig bristle or camel’s hair
could achieve, such as spraying squares and cir-
cles of color or tiling the surface of the canvas
with the polygons known as Dirichlet domains.
The result is a highly stylized and often impres-
sionistic version of the template image.

Weird and wonderful brushes are not unique
to Haeberli’s software; several other painting
programs have a wide selection of them. But oth-
er painting software does not represent the fin-
ished artwork as a list of brushstrokes; instead
the brushes merely spray pixels onto the image
surface, so that any subsequent operations have
to be done at the pixel level. In effect, you are left
with a flat photograph of a painting, whereas the
brushstroke format is more like a movie of the
artist at work—a movie so precise and detailed
that it reproduces the exact motions needed to
apply all the layers of paint to the canvas.

Storing brushstrokes opens up a number of
possibilities for image manipulation that simply
cannot be done either with pixels or with con-
ventional pigments on canvas. At the simplest
level, you can undo a brushstroke if you make a
mistake. Beyond that is the possibility of “post-
processing” the brushstrokes. For example, you
might experiment with changing the diameter or
length or direction of the brushstrokes after a
painting is completed, or you might use one tem-
plate image to determine the color of each brush-
stroke and another image to control brush orien-
tation. You could even change the order in which

the brushstrokes are layered onto the canvas, per-
haps sorting them by color.

The most elaborate versions of Haeberli’s
painting program run only on Silicon Graphics
workstations, but a Java applet called the Impres-
sionist has some of the basic functions. It is avail-
able at http://www.sgi.com/grafica/index.html
and should run on any Java-equipped computer.

Squeezing the Pixels
Both the strengths and the weaknesses of pixel-
based graphic formats lie in the absence of hier-
archical structure in the image. On the one hand,
having only a flat array of pixels to worry about
facilitates many useful kinds of image process-
ing, such as filtering to sharpen edges, or adjust-
ing contrast and color balance. On the other
hand, pixels are maddeningly oblivious to what
they are portraying. You might look at an image
and see parasols, rowboats, picnic baskets and
top hats, but none of those objects exist in the
computer file. There are only pixels there, igno-
rant of the patterns they form.

Extracting meaningful structures from image
data is a notoriously difficult problem; it’s called
vision. But there are simpler ways of imposing
structure on an array of pixels. These methods
cannot pick out top hats or parasols, but they do
identify certain patterns and regularities. Much
of the work on such pixel patterns derives from
efforts to compress images into a smaller space.

Image compression is possible only because
scenes of the natural world make up a small and
rather special subset of all possible arrays of pix-
els; they are not random data but have inherent
redundancies and correlations. The simplest
compression scheme is run-length encoding. If
you list pixel values in raster-scan order, you of-
ten discover several pixels in a row with the
same color. You can then save space by writing
down the color only once, along with the number
of times it should be repeated. An image com-
pressed in this way is really no longer an array of
pixels; it is a collection of lines of various lengths,
which are fitted together like planks in a hard-
wood floor to reconstruct the complete image.

Run-length encoding exploits correlations only
along a single dimension. Another way of break-
ing down and reassembling a picture, called a
quadtree, takes advantage of both vertical and
horizontal regularities. To build a quadtree, take
a square image and average all the pixel values,

204 American Scientist, Volume 87

Figure 3. Vector drawings, made up of line segments instead of pixels, show five stages in the construction of the space-
filling Hilbert curve. Postscript, a programming language as well as a graphics notation, represents such objects concisely.



so that the entire area is a flat expanse of color ex-
pressed by a single number; this is the first and
crudest level of the quadtree. Now divide the
original image into four square quadrants, and
average the pixels within each of these regions.
The four averages become the four branches at
the next level of the quadtree. Continue in the
same way, dividing each quadrant into subquad-
rants, until eventually you reach the level of sin-
gle pixels. (The construction is easiest when the
image is a square whose side is a power of 2, but
other shapes and sizes can be accommodated
with a little extra effort.)

Quadtrees offer a multiresolution view of pixel
data. Looking at just the first few levels of the tree
gives a rough impression of the image content;
continuing to further levels adds progressively
more detail. Some images posted on the Web,
called “progressive JPEGs,” work in just this way,
starting out as blocky approximations and grow-
ing sharper through gradual refinement.

A fundamental property of quadtrees is that pix-
els stored in the same node of the tree are also close
together in the image. As a result, sibling nodes
tend to be highly correlated, creating an opportu-
nity for image compression. After averaging the
color in a quadrant, you can record not the average
itself but the difference between the average and
the color of the quadrant’s parent node. These par-
ent-child differences tend to be small, and so they
can be given a very compact encoding.

Surely the most unusual image-compression
technique is one based on the idea of fractals, or
self-similar patterns. Certain features of the nat-
ural landscape are famously fractal—coastlines,
mountain ranges and ferns being the favorite ex-
amples. An idealized black spleenwort fern has
become the mascot of the fractal industry. Given
an image of the entire fern, you can make a num-
ber of photocopies at reduced size, then rotate
and slide the smaller images until they exactly
cover the original. By applying the same trans-
formation to any one of these frond images, you
create even smaller frondlet images that exactly

cover the frond. In nature this process comes to
an end after just a few iterations, but mathemati-
cally it can be continued indefinitely. It suggests a
curious but compact way of representing the fern
image—just store a list of instructions for scal-
ing, rotating and translating photocopies. There’s
no need to keep any form of the original image.
Starting with an arbitrary image and repeating
the list of transformations enough times, you can
generate an image that approximates the fern as
closely as you wish.

This is wonderful news for fern-fanciers, but
what about images of other subjects? As it turns
out, patterns amenable to this kind of treatment
are more common than you might guess. Any
image can be represented as a “collage” of fractal
parts. The mathematical ideas behind this
process were first explored by John E. Hutchin-
son of the Australian National University and
were further refined and applied to image com-
pression by Michael F. Barnsley of the Georgia
Institute of Technology. The basic idea is that cer-
tain geometric transformations—combinations of
scaling, rotating and translating—eventually
reach a fixed point, where further operations
cause no further change. If a section of an image
is similar to such a fixed-point pattern, the corre-
sponding list of transformations can serve as an
approximate encoding of the section. The trick is
dividing the image into the right sections and
finding the right transformations.

The fractal description of an image certainly sat-
isfies the desire for a hierarchical structure; indeed,
there is no limit to the levels in the hierarchy. You
can even zoom in on details—microfronds and
nanofronds—that were not present in the original.

Lost in Frequency Space
Another alternative to pixels replaces an image
with its spectrum.

The idea of a spectrum is most familiar in the
context of one-dimensional signals, such as the
sound of a flute or the light of a star. In these in-
stances the signal is a graph of amplitude as a
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Figure 4. Three renderings of a single image were created by Paul Haeberli. Each version is a sequence of brushstrokes; one brush scatters col-
ored disks, another draws Dirichlet domains (which look like the interior of a foam) and the third gives a more conventional painterly effect.



function of time, and the spectrum of the signal is
a graph of power or intensity as a function of fre-
quency. The conversion from the time domain to
the frequency domain relies on Joseph Fourier’s
remarkable discovery that any periodic wave-
form, no matter how complex, can be construct-
ed as the sum of simple sine and cosine waves.

Fourier analysis can be applied to a two-dimen-
sional image by measuring “spatial frequencies”
along both the x and y axes. Think of a photo-
graph of a ladder leaning against a picket fence. If
you scan across the image horizontally, recording
the brightness of each point as you go, you get a
spectrum with an energy peak at the frequency
corresponding to the spacing of the fence pickets;
when you scan vertically, the strongest peak is at a
lower spatial frequency, that of the ladder rungs.
The complete spectrum of an image records the
contributions of all spatial frequencies, from zero
up to the maximum resolution of the image data. 

A form of Fourier analysis commonly used in
image processing is called the discrete cosine
transform. The procedure begins by dividing the
image into square patches of, say, eight by eight
pixels. For each such patch there are 64 discrete
Fourier components, representing all possible
spatial frequencies and phases along the x and y
axes. Any eight-by-eight patch of the original im-
age can be reconstructed by adding up various
weighted combinations of these basic frequency
elements. The zero-frequency component gives
the average brightness of the patch. If the patch
has gradual variations in brightness over its entire
width or height, then some of the lower frequen-
cy components will be strongly represented in the
spectrum. Sharp edges and fine lines in the image
emphasize the high-frequency components.

Fourier analysis yields yet another method of

image compression. It might seem at first that
nothing is gained by converting to frequency
space, since an eight-by-eight patch with 64 pixels
also has 64 Fourier components. But in most im-
ages not all the Fourier components are equally
important. For example, in a patch of nearly uni-
form color only the zero-frequency element has a
significant weight, and the rest of the coefficients
can be thrown away. This situation is common
enough to make Fourier compression worth-
while. Indeed, the discrete cosine transform is the
main compression method in JPEG images.

The Mind’s Eye
When you ponder how best to represent a picture,
a promising approach is to ask how people or an-
imals see images. What kinds of data structures
does the brain employ for visual information?

The input end of the visual system is clearly a
pixel-based device: The retina of the eye has
much in common with the array of photosensors
in a digital camera. Nevertheless, we do not see in
pixels. No one experiences the visual surround as
an array of colored dots—not even Seurat. At the
level of conscious awareness, what we see are
faces, trees, trombones, streetlights, paintings—
and all of these objects seem to have a continuous
and unpixelated surface, no matter how closely
we look at them. Evidently visual information is
re-encoded somewhere along the neural path-
ways of the eye and the brain.

A part of the brain where image representa-
tion has been studied extensively is a region
known variously as the primary visual cortex,
the striate cortex or simply V1. In the 1960s
David Hubel of Harvard University and Torsten
Wiesel of the Rockefeller University recorded the
response of individual V1 neurons when animals
were shown various simple patterns, such as
spots and stripes. These experiments and later
work revealed that the “receptive field” of a typ-
ical V1 neuron has a distinctive geometry, with
three main characteristics. First, the receptive
field is localized: The cell responds most strongly
to stimuli in a particular area of visual space. The
field is also oriented: Each neuron has a favored
axis for stripes or elongated features. And finally
the field is most sensitive to variations in lumi-
nance over a specific size range; in other words, it
has a preferred band of spatial frequencies. Thus
the V1 cortex seems to classify features according
to their position, orientation and angular size.

Why should the mammalian visual system fa-
vor this particular way of representing images?
That’s a good question, which neurobiological
experiments have not yet answered. Bruno A.
Olshausen of the University of California at
Davis and David J. Field of Cornell University
have therefore approached the problem from the
opposite direction. Instead of looking into the
brain for clues to how it encodes images, they
look at images of natural scenes and ask what
encoding would give the simplest or most effi-
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Figure 5. Basis functions for the discrete cosine transform can be com-
bined to reconstruct any eight-by-eight-pixel grayscale image.



cient representation. (In this context a “natural”
scene is not necessarily the forest primeval; it
could be a city street, or even a page of text. What
the term excludes are artificial patterns such as
random visual noise.)

The technique adopted by Olshausen and Field
is a distant cousin of Fourier analysis. The aim is
to find a set of “basis functions” that can be com-
bined in various proportions to generate an im-
age. The sine and cosine functions of Fourier
analysis are one such basis set, but it is not the
best set for natural images. Following earlier
work by John G. Daugman of the University of
Cambridge, Olshausen and Field argue that the
optimal basis functions are those that yield a
sparse encoding for images. What this means is
that any single image is likely to excite only a few
of the V1 neurons. The basis set should also be
complete, in the sense that it can account for the
features of any natural image.

A set of functions that satisfy these criteria is
not something that can be cooked up analytically.
Olshausen and Field search for a sparse basis set
through an iterative learning procedure, which
might even resemble the mechanism by which a
developing organism (or perhaps an evolving
species) learns to make sense of visual input. Sev-
eral images are selected as a training set, from
which many small square patches are extracted at
random. The functions chosen to describe these
patches are initially arbitrary; they are refined by
repeatedly making small changes and accepting a
change if the resulting functions yield a sparser
representation. With 16-by-16 patches, the proce-
dure takes a few hours to converge on a basis set.

What kinds of basis functions emerge from
this process? They look nothing like the stripes
and checkerboards of the discrete cosine trans-
form. Instead most of the functions are elongated
ellipses, which seem at first glance to be scattered
randomly over the square patches. On examining
the entire set of functions, it turns out that nearly
all combinations of position, orientation and spa-
tial frequency are present in the set, which means
that each function can respond to a specific com-
bination of these three properties. Of course po-
sition, orientation and spatial frequency are just
the features detected by V1 neurons. Finding a
resemblance between the basis functions and the
V1 receptive fields is not a proof that the brain
employs functions of this particular form, but the
result is encouraging and suggests strategies for
further experimental work.

Even if we knew the brain’s own graphics file
format, we would not necessarily want to adopt
it for computer graphics files. A biological prece-
dent is not binding on technology. Further-
more—and here I depart on a perilous flight of
speculation—the brain’s encoding may be well
adapted only to image analysis and understand-
ing, not to image generation. Because of a curious
asymmetry in mammalian sensory architecture,
the brain has no need ever to recreate a pixel ar-

ray. Although audible channels of communica-
tion go both ways—we have ears to hear with
and a mouth to speak with—in the electromag-
netic spectrum we have receptors but no projec-
tors. Thus the images we receive and interpret
never have to be reconstructed for display or
transmission (unless you are Seurat, painting
with pixels). It is easy enough to imagine a plan-
et where creatures have organs for both input
and output of images; their visual cortex would
doubtless be different from ours. Maybe we
should check out the V1 neurons of Teletubbies.
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Figure 6. Sparse basis functions for 12-by-12-pixel patches were
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Most of the functions are oriented, localized and cover a limited range
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cortex. (Image courtesy of Bruno A. Olshausen.)


