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Suppose I had once borrowed your boat and, secretly,
replaced each board with a similar but different one.
Then, later, when I brought it back, did I return your
boat to you? What kind of question is that? It’s real-
ly not about boats at all, but about what people mean
by “same.”

—Marvin Minsky, The Society of Mind

I have heard of a touchy owner of a yacht to whom a
guest, on first seeing it, remarked, ‘I thought your
yacht was larger than it is’; and the owner replied,
‘No, my yacht is not larger than it is’.

—Bertrand Russell, “On Denoting” 

T
he equal sign seems to be a perfectly inno-
cent bit of mathematical notation. We all
know exactly what it means. The symbol

“=” is the fulcrum of a balance. It declares that
the things on either side of it, whatever they may
be, are equivalent, identical, alike, indistinguish-
able, the same. What could be clearer? Although
an equation may be full of mystery—I can’t ex-
plain what eiπ = –1 really means—the enigma lies
in the two objects being weighed in the balance;
the equal sign between them appears to be total-
ly straightforward.

But equality isn’t as easy as it looks. Some-
times it’s not at all obvious whether two things
are equal—or even whether they are two things.
In everyday life the subtle ambiguities of identity
and equality are seldom noticed because we
make unconscious allowances and adjustments
for them. In mathematics they cause a little more
trouble, but the place where equality gets really
queer is in the discrete, deterministic and literal-
minded little world of the digital computer.
There, the simple act of saying that two things
are “the same” can lead into surprisingly treach-
erous territory.

What follows is a miscellaneous collection of
problems and observations connected in one way
or another with the concepts of equality and
identity. Some of them are mere quibbles over
the meaning of words and symbols, but a few re-
flect deeper questions. The difficulty of defining

equality inside the computer may even shed a
bit of light on the nature of identity in the physi-
cal world we think we live in.

 

Some Are More Equal Than Others
There’s an old story about the mathematician
who sets out to learn a computer programming
language such as FORTRAN or C. Everything goes
swimmingly until she comes to the statement
x = x + 1, whereupon she concludes that com-
puter programming is mathematical nonsense.

Of course this story is just a programmer’s joke
at the expense of mathematicians. I would re-
spond in the same spirit by suggesting that a
mathematician would be better equipped than
anyone else to solve the “equation” x = x + 1. Ob-
viously x is equal to 

 

ℵ 0, the infinite ordinal num-
ber, which has just the property that ℵ 0 = ℵ 0 + 1.

In truth, x = x + 1 is not an equation at all in
FORTRAN or C, because the symbol “=” is not an
equal sign in those languages. It is not a relation-
al operator, comparing two quantities, but an as-
signment operator, which manufactures equality.
When an assignment statement is executed,
whatever is on the left of the “=” sign is altered to
make it equal to the value of the expression on
the right. The semantics of this operation are al-
together different from those of testing two
things for equality. As it happens, the semantics
of assignment introduce certain troublesome
characteristics into computer programs, which I
shall have occasion to mention again below.

To avoid confusion between equality and assign-
ment, many programming languages choose dif-
ferent symbols for the two operations. For example,
Algol and its descendants write “:=” for assign-
ment. In all that follows the symbol “=” will mean
only equality (whatever that means).

By the way, the “=” notation was invented by
Robert Recorde (1510–1558). He chose two parallel
lines as a symbol of mathematical equality “be-
cause noe 2 thynges can be moare equalle.”

Equality of Beans
Just what does it mean for two numbers to be
equal? Note that this is a question about num-
bers, not numerals, which are representations of
numbers. The numeral 5 in base 10 and the nu-
meral 11 in base 4 and the Roman numeral V all

508 American Scientist, Volume 86

COMPUTING SCIENCE

IDENTITY CRISIS

Brian Hayes

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.



represent the same number; they are all equal.
Numbers can even be represented by piles of
beans, which form a unary, or base-1, notation.

For small enough hills of beans, most people
can judge equality at a glance, but computers are
no good at glancing. If you want to teach a com-
puter to test bean piles for equality, you’ll need
an algorithm. There’s a very simple one that
works on piles of any finite size. The only mathe-
matical skill the computer needs is the ability to
count from 0 up to 1: It has to be able to recognize
an empty pile and to choose a single bean from a
nonempty pile. Then it can determine the equali-
ty of two piles by following these rules: First,
check the piles to see if they are empty. If both
piles are empty, they are obviously equal. If one
pile is empty and the other isn’t, the piles are un-
equal. If neither pile is empty, remove one bean
from each pile and repeat the whole procedure.
Since the piles are finite, at least one of them
must eventually be emptied, and so the algo-
rithm will always terminate.

This method is loosely based on a scheme de-
vised a century ago by the Italian mathematician
Giuseppe Peano, who formulated a set of axioms
for arithmetic in the natural numbers (also
known as the counting numbers, or the nonneg-
ative integers). Peano’s method can be general-
ized, though awkwardly, to the set of all integers,
including negative whole numbers. But the algo-
rithm doesn’t work for the real numbers (those
that make up the continuum of the real number
line). Indeed, the very concept of equality among
the reals is perplexing. For the rational numbers,
which form a subset of the reals, equality is no
problem. Since every rational can be represented
as a fraction reduced to lowest terms, two ration-
als are equal if their numerators are equal and
their denominators are equal. The trouble is, al-
most all the reals are irrational; if you choose a
point at random along the real number line, the
probability of landing on a rational is zero. And no
finite process can show that two arbitrary irra-
tional numbers are equal. 

Irrational numbers are usually represented as
nonrepeating decimals, such as the familiar
3.14159 for the first few digits of π. Because the
pattern of digits never repeats, matching up two
irrational numbers digit by digit will never prove
them equal; there are always more digits yet to be
checked.

Writing numbers in decimal form has another
pitfall as well: A single real number can have mul-
tiple decimal expansions, which are mathemati-
cally equivalent but don’t look at all alike. The
problem comes up even with rational numbers. A
case in point is the pair of values 0.999... and
1.000... (where the three dots signify an infinitely
repeated pattern of digits). These numerals have
not one digit in common, and yet they denote ex-
actly the same value; there is not the least smidgen
of difference between them. (If you doubt this,
consider that 0.333... + 0.333... + 0.333... = 0.999...,

but 

 

3 + 3 + 3 = 1.) Thus some real numbers look
alike but can’t be proved equal, while others are
equal but look very different.

Same Difference
Real numbers are creatures of mathematics, not
computer science. Although some programming
languages offer a data type named “real,” the
numbers of this type are quite unreal. They are
“floating-point” numbers, which only approxi-
mate a continuous distribution. The floating-point
format is much like scientific notation, in which a
number is represented by a mantissa and an ex-
ponent. Only a finite number of bits are reserved
for the mantissa and exponent, and so the num-
bers are limited in both precision and range.

One big advantage of floating-point arithmetic
is that you never have to wait forever. When float-
ing-point values stand in for reals, questions about
equality are always answered promptly. On the
other hand, the answers may well be wrong.

In your favorite programming language, calcu-
late the square root of 2 and then square the result.
I’ve just tried this experiment with an old program-
mable calculator, which reports the answer as
1.999999999. Interpreted as an approximation to the
real number 1.999..., this result is not an error. It’s
just as correct as 2.000000000, which is also an ap-
proximation. The problem is that the machine itself
generally cannot recognize the equivalence of the
two alternative answers. Suppose a program in-
cludes the conditional statement:

if (√
_
2 )2 = 2

then let there be light
else annihilate the universe

If this program happens to be running on my
HP-41C, we’re all in trouble.

There are alternatives to floating-point arithmetic
that avoid these hazards. Symbolic-mathematics
systems such as Maple and Mathematica get the
right answer by eschewing numerical approxima-
tions; in effect, they define the square root of 2 as
“the quantity that when squared is equal to 2.” A
few programming languages provide exact rational
arithmetic. And there have been various schemes
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input x and y

x = 0?

y = 0?

y = 0?

x = y x ≠ y

x := x – 1
y := y – 1

yes

yes

yes

no

no

no

Figure 1. Peano’s algorithm establishes the equality of
two natural numbers, or nonnegative integers.



for calculating with approximations to real num-
bers that grow more digits on demand, potentially
without limit. Nevertheless, most numerical com-
putation is done with conventional floating-point
numbers, and a whole subdiscipline of numerical
analysis has grown up to teach people how to cope
with the errors.

Programmers are sometimes advised not to com-
pare floating-point values for exact equality, but
rather to introduce a small quantity of fudge. In-
stead of computing the relation x = y, they are told
to base a decision on the expression |x – y| < ε,
where the straight brackets denote the absolute-val-
ue operation, and ε is a small number that will cov-
er up the imprecision of floating-point arithmetic.
This notion of approximate equality is good
enough for many purposes, but it has a high cost.
Equality loses one of its most fundamental proper-
ties: It is no longer a transitive relation. In the pres-
ence of fudge, you can’t count on the basic principle
that if x = y and y = z, then x = z.

Some Are Less Equal Than Others
Numbers aren’t the only things that can be equal
or unequal. Most programming languages also
have equality operators for other simple data ob-
jects, such as alphabetic characters; thus a = a but
a ≠ b. (Whether a = A is a matter up for debate.)

Sequences of characters (usually called strings)
are also easy to compare. Two strings are equal if
they consist of the same characters in the same
sequence, which implies the strings also have the
same length. Hence an equality operator for
strings simply marches through the two strings
in parallel, matching up the characters one by
one. Certain other data structures, such as arrays,
are handled in much the same way.

But one important kind of data structure can be
problematic. The most flexible way of organizing
data elements is with links, or pointers, from one
item to another. For example, the symbols a, b and c
might be linked into the list a → b → c → nil, where
nil is a special value that marks the end of a chain of
pointers. Comparing two such structures for equal-
ity is straightforward: Just trace the two chains of
pointers, and if both reach nil at the same time with-
out having encountered any discrepancies along
the way, they are identical. 

The pointer-following algorithm works well
enough in most cases, but consider this structure:

An algorithm that attempts to trace the chain of
pointers until reaching nil will never terminate,
and so structural equality will never be decided.
This problem can be solved—the workaround is
to lay down a trail of breadcrumbs as you go,
and stop following the pointers as soon as you
recognize a site you’ve already visited—but the
technique is messy.

There’s something else inside the computer
that’s remarkably hard to test for equality: pro-

grams. Even in the simplest cases, where the pro-
gram is the computational equivalent of a mathe-
matical function, proving equality is a challenge.
A function is a program that accepts inputs
(called the arguments of the function) and com-
putes a value, but does nothing else to alter the
state of the computer. The value returned by the
function depends only on the arguments, so that
if you apply the function to the same arguments
repeatedly, it always returns the same value. For
example, f(x) = x2 is a function of the single argu-
ment x, and its returned value is the square of x.

A given function could be written as a computer
program in many different ways. At the most triv-
ial level, f(x) = x2 might be replaced by f(y) = y2,
where the only change is to the name of the vari-
able. Another alternative might be  f(x) = x × x, or
perhaps  f(x) = exp(2 log(x)). It seems reasonable to
say that two such functions are identical if they re-
turn the same value when applied to the same ar-
gument. But if that criterion were to serve as a test
of function equality, you would have to test all pos-
sible arguments within the domain of the function.
Even when the domain is not infinite, it is often in-
conveniently large. The alternative to such an “ex-
tensional” test of equality is an “intensional” test,
which tries to prove that the texts of the two pro-
grams have the same meaning. Fabricating such
proofs is not impossible—optimizing compilers do
it all the time when they substitute a faster se-
quence of machine instructions for a slower one—
but it is hardly a straightforward task.

When you go beyond programs that model
mathematical functions to those that can modify
the state of the machine, proving the equality of
programs is not just hard but undecidable. That
is, there is no algorithm that will always yield
the right answer when asked whether two arbi-
trary programs are equivalent. (For a thorough
discussion of program equivalence, see Richard
Bird’s book Programs and Machines.)

One and the Same
We seldom notice it, but words such as “equal,”
“identical” and “the same” conceal a deep ambi-
guity. Consider this pair of sentences:

On Friday Alex and Baxter wore the same necktie.
On Friday Alex and Baxter had the same teacher.

These two instances of “the same” are not at all the
same. Unless Alex and Baxter were yoked together
at the neck on Friday, they wore two ties; but they
had only one teacher. In the first case two things are
alike enough to be considered indistinguishable,
and in the second case there is just one thing, which
is necessarily the same as itself. The two concepts
are so thoroughly entangled that it’s hard to find
words to speak about them. Where confusion is
likely I shall emphasize the distinction with the
terms “separate but equal” and “selfsame.”

When there’s some uncertainty about whether
two things are alike or are really just one thing, the
usual strategy is to examine them (it?) more closely.

a b c
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If you study the two neckties long enough, you’re
sure to find some difference between them. Even
identical twins are never truly identical; when you
get to know them better, you learn that one has a
tattoo, and the other can’t swim. (If all else fails,
you can ask them; they know who they are.)

The strategy of looking harder until you spot a
difference doesn’t work as well inside the com-
puter, where everything is a pattern of bits, and
separate patterns really can be equal. Bits have
no blemishes or dents or distinguishing features.

Another way to decide between the two kinds
of sameness is through the rule of physics (or
metaphysics) that a single object cannot be in two
places at the same time, and two objects cannot
occupy the same space at the same time. Thus all
you have to do is bring Alex and Baxter together
in the same room and check their neckwear.

The computational equivalent of this idea states
that two objects are in fact the selfsame object only
if they have the same address in memory. Thus
two copies of an object can be distinguished, even
though they correspond bit-for-bit, because they
have different addresses. This is a practical
method in widespread use, and yet it has certain
unsatisfactory aspects. In the first place it assumes
that the computer’s memory is organized into an
array of unique addresses, which is certainly the
usual practice but is not the only possibility. Sec-
ond, letting identity hinge on location means that
an object cannot move without changing into
something else. This idea that where you live is
who you are contradicts everyday experience. It is
also a fiction in modern computer systems, where
data are constantly shuffled about by mechanisms
such as virtual memory, caches and the storage-
management technique called garbage collection;
to maintain the continuity of identity, all of these
schemes have to fool programs into thinking that
objects don’t move—a source of subtle bugs.

More of the Same
There is a third way of exploring issues of identi-
ty, but it lies outside the realm of nondestructive
testing. If Alex spills ketchup on his tie, does Bax-
ter’s tie also acquire a stain? If Baxter steps on
his teacher’s toe, does Alex’s teacher have a sore
foot? The principle being suggested here is that
two things are the selfsame thing if changing one
of them changes the other in the same way.

In computing, this process is encountered
most often in the unexpected and unpleasant dis-
covery that two variables are “aliases” referring
to the same value or object. For example, if the
variable designating Alex’s grade-point average
and the variable for Baxter’s average both point
to the same location in memory, then any change
in one value will also be reflected in the other.
This is probably not the desired behavior of the
school’s grading system. 

In principle, deliberate alteration of memory
contents could serve as a test of identity: Just twid-
dle the bits of an object and see if the correspond-

ing bits of another object flip. But the test is not
foolproof, particularly in a computer with multiple
threads of execution. There’s always the chance
that the same change might be made coincidental-
ly in two different places; two independent
ketchup stains are not an impossibility. If coinci-
dence seems too unlikely, consider that there might
be a process running whose purpose is to synchro-
nize two variables, checking one of them at fre-
quent intervals and changing the other one to
match. Or, conversely, a background process might
undo any change to a variable, restoring the origi-
nal value whenever it is modified. Under these
conditions, a bit-flipping identity test might find
that an object is not even equal to itself.

The distinction between separate-but-equal ob-
jects and a selfsame object can be crucially impor-
tant. When I make a bank deposit, I’d strongly
prefer that the amount be credited to my own self-
same account, rather than to the account of some-
one who is separate-but-equal to me—perhaps
someone with the same name and date of birth.
The standard practice for maintaining identity in
these circumstances is to issue a unique identify-
ing number. These are the numbers that rule so
much of modern life, the ones you find on your
bank statement, your driver’s license, your credit
cards. The same technique can be used internally
by a computer program to keep track of data ob-
jects. For example, the programming language
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Figure 2. Why do all electrons look alike? Perhaps they are all the
same electron! The event in the upper diagram is usually interpret-
ed as an interaction of three particles: An electron and positron
appear spontaneously, then the positron collides with a second elec-
tron and both particles are annihilated. But the event could be inter-
preted as the trace of a single particle that moves forward in time as
an electron and backward as a positron. In the lower diagram a sin-
gle particle with a tangled world line appears as multiple electrons
and positrons.



Smalltalk tags all objects with individual serial
numbers. (Smalltalk is also notable for having two
equality operators: “=” for separate-but-equal ob-
jects and “==” for selfsame objects.)

Always the Same
A big advantage of the serial-number approach
to identity is that things stay the same even as
they change. Identity doesn’t depend on location
or on any combination of attributes. Two bank
accounts might have exactly the same balance,
but they are different accounts because they have
different account numbers. Within a single ac-
count the balance is likely to vary from day to
day, but it remains the selfsame account.

This interplay of constancy and change is cer-
tainly a familiar feature of human life. My friend
Dennis Flanagan has written that the molecules
in most of the tissues of the human body have a
residence half-life of less than two weeks. Clearly,
then, I’m not the man I used to be—and yet I am.
Indeed, it is when this process of continual mole-
cular replacement ceases that “I” vanish.

In the semantics of programs, the unique iden-
tity of objects matters only when things can
change. In a programming system without as-
signment operators or other ways of modifying
existing values, the distinction between separate-
but-equal things and the selfsame thing is of no
consequence. If an object can never change after
it is created, then the outcome of a computation
will never depend on whether the program uses
the original object or an exact copy.

For certain abstract kinds of objects, the whole
concept of individual identity seems beside the
point. In the equation 2x – 2 = x + 2, should we
think of the three 2’s as being three separate-but-
equal entities, or are they three expressions of a
single archetype of 2-ness? It doesn’t seem to
matter. There is no way of telling one 2 from an-
other. The same can be said of other abstractions,
such as alphabetic characters or geometric points.

Even some elements of the physical world
share this indifference to individuality. Electrons
and other elementary particles seem to be utterly
featureless; unlike snowflakes, no two are differ-
ent. All electrons have exactly the same mass and

electric charge, and they carry no serial numbers.
They are a faceless multitude. No matter how
long and hard we stare, there is no way to tell
them apart. They are all separate but equal.

Or else maybe they are all the selfsame electron.
In 1948 John Archibald Wheeler, in a telephone
conversation with his student Richard Feynman,
proposed the delightful hypothesis that there is
just one electron in the universe. The single particle
shuttles forward and backward in time, weaving a
fabulously tangled “world line.” At each point
where the particle’s world line crosses the space-
time plane that we perceive as “now,” it appears
to us as an electron if it is moving forward in time
and as a positron if it is going backward. The sum
of all these appearances constructs the material
universe. And that’s why all electrons have the
same mass and charge: because they are all the
same electron, always equal to itself.
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