

COMPUTING SCIENCE

BIT ROT

Brian Hayes

A reprint from

American Scientist
the magazine of Sigma Xi, the Scientific Research Society

Volume 86, Number 5
September–October, 1998

pages 410–415

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions,

American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A., or by electronic mail to perms@amsci.org. Entire contents © 1998 Brian Hayes.

S
omewhere in a cobwebby corner of my com-
puter’s hard disk are a few manuscripts I
wrote 15 years ago on my first PC. The

word-processing software I used then was grand-
ly named The Final Word. It was anything but.
I’ve gone through a dozen word processors since
then, and nearly as many computers. To keep old-
er documents accessible, I’ve had to transfer and
transform them repeatedly, from one disk to the
next and from one file format to another. And still
I have yet to find the Final Word. Sooner or later
I’ll be gathering up my digital belongings yet
again and converting them to some new format.
This time I’ll have 12,000 files in tow. I can’t wait.

But my personal data-migration problems are
puny compared with those of corporations, uni-
versities, libraries and publishers. (Imagine the
plight of the National Archives, the agency
charged with preserving everything the U.S. gov-
ernment deems to be worth keeping.) And the
material to be preserved is not just text. Obsolete
storage media and file formats are just as vexing
when the files hold other kinds of information,
such as images, engineering drawings, the nu-
merical results of scientific experiments, digitized
audio and video, maps, tax returns, databases.

One cause for worry among archivists is the im-
permanence of digital storage media. In this re-
spect civilization has been going downhill ever
since Mesopotamia. Paper documents cannot
match the longevity of the Sumerians’ clay tablets,
and magnetic media seem to be even more
evanescent than paper. That’s disturbing news,
and yet I suspect that relatively few disks or tapes
have yet died of old age. Long before the disk
wears out or succumbs to bit rot, the machine that
reads the disk has become a museum piece. So the
immediate challenge is not preserving the infor-
mation but preserving the means to get at it.

Occasionally, the rescue of some long-neglected
digital resource calls for heroic measures, such as
reconstructing an antique tape drive. But most file
transfers and translations are routine; utility soft-
ware handles the conversion, though often with a
minor loss of information. Even when the process

is easy and successful, however, file conversion is
a nuisance. It’s a lot like moving your house-
hold—more work than you expected, and a few
dishes always get broken. As my stockpile of files
for the digital U-Haul continues to grow, I dread
the prospect more and more. I daydream of hiking
into the woods as a cybersurvivalist, refusing ever
again to upgrade my hardware and software. If I
stock up on spare parts—80-megabyte disk dri-
ves, 30-pin SIMMs—I could live out my remain-
ing years in a log cabin with a Macintosh SE/30.

Most likely I would not be alone in the woods,
but before I begin hoarding the computer equiv-
alent of canned goods it seems prudent to con-
sider less-extreme alternatives. All I really want is
some way of representing digital information
that I can stick with for a while. I want a file for-
mat for the ages—a single format that will serve
many purposes and continue to work with many
combinations of hardware and software. Which
format is that? I don’t have a definitive answer—
not even an answer that meets all my own im-
mediate needs. But I think I know where to look
for inspiration. Here’s a hint: Among all the
kinds of things stored in computers, the ones that
are hardest to keep up-to-date and hardest to
move from one platform to another are programs
for the computer itself. Maybe programmers
know something the rest of us ought to learn.

The $1.29

Oeuvre
Are all those bits and bytes worth saving? Surely
not. But if they’re not worth saving, they’re also
not worth throwing out. The cost of magnetic
disk storage is roughly 10 cents per megabyte
these days. Tapes and CD-ROMs are even cheap-
er. My entire oeuvre—everything I’ve ever written
for publication, as well as all the private and per-
sonal ephemera of a lifetime, from school com-
positions to love letters to grocery lists—all this
would fit on a single CD-ROM. The storage cost
for a lifetime’s worth of words is $1.29. That’s not
much incentive for cleaning out the attic.

Lately I’ve found an even better reason for
keeping those files. I’ve discovered that I’m not
just a writer anymore—I’m a content provider!
And my disk drive is stuffed full of content.

In years past an author’s final product was the
printed page. The computer file was nothing

410 American Scientist, Volume 86

COMPUTING SCIENCE

BIT ROT

Brian Hayes

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

more than an intermediate stage in the process of
putting ink on paper. Once the presses were
rolling, the disk files had no further value, and
they could be discarded just as carbon copies
were in the age of the typewriter.

All that has changed. Print is no longer the
only destiny of the written word. This column,
for example, will not only be bound into a print-
ed magazine but will also be posted on the Amer-
ican Scientist Web site. Indeed, it will be offered in
several electronic forms, including Postscript and
PDF files that mimic the appearance of the mag-
azine pages and a version coded in HTML, the
native language of the Web. Someday the same
column might be made available in still other
media, such as CD-ROM. An abstract might be
prepared automatically for a bibliographic data-
base. The article might be reprinted in an anthol-
ogy with a different typographic design, or it
could be reproduced through a print-on-demand
service for classroom use. Who knows what else
might be in prospect? Last year’s printout and
this year’s Web page could be next year’s virtual-
reality environment. Or tee-shirt.

In this new world of digital content, computer
files are most certainly not disposable interme-
diate forms. The disk version is the master docu-
ment, from which everything else derives. I
might well throw away printouts and proofs, but
I keep the disks. Furthermore, I worry about files
that might be stranded or orphaned as computer
hardware and software evolve.

This is not just my problem (although I may be
more compulsive about it than most). In the sci-
ences, almost everyone is becoming a content
provider. Papers are submitted to journals and
conferences in electronic form, and they may also
appear as electronically distributed e-prints. Sup-
porting data, such as genetic sequences, wind up
in public databases. Many of these digital docu-
ments are considered a permanent part of the sci-
entific literature. Their life expectancy is greater
than that of the software that created them.

The Nitty Gritty
Strictly speaking, a computer file doesn’t have a
format; it has many formats, built in layers one
atop the other. At the bottom of the hierarchy is
the pattern of magnetized stripes on a disk or
tape, or the microscopic pits in the reflective sur-
face of a CD-ROM. This physical layer is the do-
main of hardware; you can’t even perceive the

recorded information, much less make sense of it,
without the right machinery.

At the next level, patterns of bits are interpret-
ed as numbers, characters, images and the like.
The meaning of the patterns is always not obvi-
ous. Numbers can be stored in a baffling variety
of formats. An integer might be represented by 8,
16, 32 or 64 bits. The bits could be read from left
to right or from right to left. Negative numbers
could be encoded according to either of two con-
ventions, called one’s complement and two’s
complement. Other variations include binary-
coded decimal and floating-point numbers.

For text the situation is not much better. “Plain
ASCII text” is often considered the lowest com-
mon denominator among computer file for-
mats—a rudimentary language that any system
ought to understand—but in practice it doesn’t
always work that way. ASCII stands for Ameri-
can Standard Code for Information Interchange.
The “American” part of the name is a tip-off to
one problem: ASCII represents only the charac-
ters commonly appearing in American English. If
a text includes anything else—such as letters
with accents or mathematical symbols—it lies be-
yond the bounds of pure ASCII.

Each ASCII character is represented by a seven-
bit binary number, which has room for values in
the range from 0 to 127. Most computers store in-
formation in bytes of eight bits each, allowing for
another 128 characters. Unfortunately, every de-
signer seems to have chosen a different set of extra
characters. Not that there aren’t standards for the
use of the eighth bit. That’s just the problem: There
are more than a dozen of them. Grown men and
women have given up decades of their lives to sit
on committees arguing over the proper place of
the dollar sign in computer character sets.

Many of ASCII’s limitations are addressed in a
new standard for character representation called
Unicode. By giving each character two bytes in-
stead of one, Unicode can specify more than 65,000
characters, enough for all the world’s major alpha-
betic languages as well as the thousands of sym-
bols in Chinese, Japanese and Korean. Unicode
seems to be catching on. It is built into Microsoft
Windows NT and the Java programming lan-
guage, and Apple has announced its plan to sup-
port the standard. In the long run, this is good
news; Unicode will solve some ticklish problems.
On the other hand, it will mean another round of
conversions for those 12,000 files I drag around be-

1998 September–October 411

0100000101101110011101000110100101110001011101010110100101110100011110010010000100001101

01000001 01101110 01110100 01101001 01110001 01110101 01101001 01110100 01111001 00100001 00001101

A n t i q u i t y ! CR

Figure 1. Hierarchy of digital file formats begins with the pattern of magnetized stripes on a disk or tape, which are
interpreted as a stream of bits. The bits have higher-level structures imposed upon them; in this case the bits are
organized into eight-bit bytes, which represent ASCII text and control codes, such as the carriage return at right.

hind me. Indeed, almost every computer file in ex-
istence today may eventually need to be converted.

The Higher Formatting
How computers represent numbers and charac-
ters is not something that most of us spend time
brooding over. In any event, we don’t have much
choice about these low-level formats. Once you
choose a computer, those decisions are made for
you. But further layers in the hierarchy of file for-
mats are not rooted so deeply in the silicon and
the operating system.

When you write with a word-processing pro-
gram, the information stored in the document in-
cludes more than just a sequence of alphabetic
characters and punctuation marks. There are also
formatting codes that indicate how the words are
to look on the page. The codes specify typefaces
(Times, Caslon, Palatino), type sizes (10 point, 12
point), stylistic variations (italic, boldface, super-
script), the alignment of text (centered, flush-left,
justified) and dozens of other properties. Some-
times the codes are explicitly entered into the text;
in The Final Word, which was inspired by a fa-
mous text-editing program called Emacs, I would
italicize a word by typing “@i<Titanic>.” More re-
cent software generally hides the formatting codes
and shows only the results of applying them.
When you select the command to italicize a word,
the word appears in italics on the display screen,
as if the text were simply stored inside the com-
puter in italic type. This is an illusion. A comput-
er’s memory has neither italic bits nor roman ones.
Hidden somewhere in the document file are ex-
plicit markers indicating the change in type style.

Some of the formatting information can be
complicated. Particularly troublesome are non-
local constructs, such as footnotes, cross-refer-
ences and markers for index and table-of-con-
tents entries. Consider a manuscript with
consecutively numbered notes printed at the end.
When a note is entered in the middle of the text,
the number that appears there depends on how
many notes precede it, while the output of the
note itself has to wait until the rest of the manu-
script has been processed. Thus the document
cannot be viewed as a strictly linear text, with
characters arranged in sequence; there are data
structures that span the entire file. Features of
this kind tend to be the hardest to translate when
you convert a file to a new computer system or to
a new purpose such as presentation on the Web.

Some files include formatting at an even higher
level of abstraction, with labels that indicate the
function of various parts of the document, rather
than instructions about how they are to appear.
The most familiar examples come from HTML,
the Hypertext Markup Language of the Web.
Headings and subheadings in an HTML docu-
ment can be labeled with tags such as <h1> and
<h2>, which indicate the relative importance of
the headings but don’t say directly how they
should look; decisions about visual formatting are

deferred until the document is displayed. Similar-
ly, a phrase can be marked with the tag to
indicate it bears emphasis, or with the
tag for strong emphasis. The emphatic text is usu-
ally displayed in italic or boldface type, but those
are not the only possibilities; an old-fashioned
printer might underline the phrase, and a text-to-
speech system might make a change of intonation.

This more abstract style of formatting is
known variously as generic or descriptive
markup, in contrast to visual or presentational
markup. In this context “markup” refers to any-
thing included in the file that’s not part of the
text or data. Descriptive markup has important
advantages for the forward-looking content
provider. As a document goes through its vari-
ous transformations from inked paper to Web to
CD-ROM to synthetic speech to whatever’s next,
a heading might be displayed in many different
ways, but it always remains a heading.

Some word processors and other programs of-
fer a rudimentary form of descriptive markup by
means of style sheets. You define a style called
“Heading,” and assign it a set of visual formats;
then if you change your mind or adapt the docu-
ment to some other purpose, revising the defini-
tion will alter all text that has the Heading style.

No standards for higher-level visual or ab-
stract markup have the universality of ASCII.
Every program goes its own way. And, unfortu-
nately, abstract markup seldom survives transla-
tion between file formats. When you convert a
document, the heading style is replaced by the
corresponding visual attributes, such as 12-point
bold type. This transformation is irreversible and
entails a loss of information: You cannot subse-
quently convert all instances of 12-point bold
type back into headings, because nonheading
text may have the same attributes.

Self-Documenting Documents
A useful exercise in thinking about data preser-
vation and conversion is to imagine yourself a
paleographer in the distant future, long after the
collapse of civilization (brought on, no doubt, not
by a wayward asteroid but by the year 2000 bug).
Your job is to recover the wisdom of the ancients
from the disks and tapes they left behind. This
situation may seem contrived, but it really isn’t
that different from rediscovering a forgotten car-
ton of eight-inch floppy disks full of Wordstar
and Visicalc files.

What characteristics of a file format would
help you recover the contents when the program
that created the file is defunct? One obvious help
is documentation. It’s always easier to find your
way if you have a map, and if the streets have
signs. Archivists call it metadata: all the informa-
tion about the information, starting with the
handwritten label stuck on a floppy disk. The
ideal is a self-documenting file—one that ex-
plains its own structure. If you want to be a fun-
damentalist about self-documentation, it be-

412 American Scientist, Volume 86

comes a game like communicating with extrater-
restrials. Every disk has to include instructions
for building a machine to read it, and instruc-
tions for reading the instructions, and so on. But
in practice it’s possible to supply a lot of meta-
data without getting caught in a bottomless
regress. For example, an image file might consist
of 307,200 eight-bit bytes; interpreting this block
of data is easier with the clue that the bytes rep-
resent the colors of pixels arranged in a rectan-
gular array of 480 rows and 640 columns.

If the file can’t fully document itself, then at
least it can be documented elsewhere. The Post-
script page-description language would not be
easy to fathom without help, but it is thoroughly
described in a series of fat books. If those manuals
survive the millennium, future generations should
be well equipped to read Postscript. The TEX type-
setting system and its nephew LATEX are also
meticulously documented. But with a few notable
and laudable exceptions, the file formats of com-
mercial software are closed and proprietary. If you
want to figure them out, you’re on your own.

Finally, the job of recovery and reconstruction
is a great deal easier for files that employ abstract
markup. The nature of abstract markup is to tell
you what is in the file, rather than how to present
it. That’s the ultimate in metadata, and just what
you need to maximize your chances of correctly
understanding the information.

Most people don’t choose their computer soft-
ware by evaluating the qualities of file formats.
They are swayed instead by lists of features, and
by the sensuous experience of clicking on tool
palettes or dragging-and-dropping. This situation
is unlikely to change, and so the file formats of
popular commercial programs are the ones that
future antiquarians will have to deal with. In this
respect an intriguing development is Microsoft’s
recent decision to make HTML a “companion” file
format for all the programs of the Microsoft Office
suite, including Word and the Excel spreadsheet.
The ability to save files in HTML format is nothing
unusual; what’s important about the Microsoft ini-
tiative is that HTML files can also be read by the
applications. A Microsoft press release promises
“seamless round-tripping” from HTML to other
formats. In principle, then, HTML could become
the primary medium for much digital informa-
tion. Regrettably, the HTML generated by the Of-
fice programs is heavily laden with visual markup.

Standardized and Generalized
Do any existing file formats offer versatility and
the plausible hope of longevity?

Postscript and TEX have already been men-
tioned as highly readable formats with open
standards. On the other hand they are not well-
suited to abstract markup. Postscript is essential-
ly a write-only language: Almost anything can
be turned into Postscript, but going the other
way is difficult. TEX, the creation of Donald
Knuth of Stanford University, is the preferred for-

matting language in the physical sciences and
mathematics. With a vast literature already com-
mitted to the format, TEX has excellent prospects
for long-term survival. But it too is fundamen-
tally a visual formatting language; abstract
markup is possible, but it takes discipline.

The leading candidate for a file format for the
ages is SGML, the Standard Generalized Markup
Language, developed in the early 1980s by
Charles F. Goldfarb of IBM and now an interna-
tional standard. SGML is actually a language for
defining markup languages. In the SGML for-
malism, all elements of a document are labeled
by descriptive tags embedded in the text. A title,
for example, might be surrounded by the tags
<title> and </title>. Visual presentation is de-
ferred until these tags are processed in a later
stage of formatting. New tags, and whole new
classes of tags, can be defined as needed.

SGML has fervent adherents. It has been re-
ceived with particular enthusiasm by organiza-
tions that produce quantities of highly structured
documents, such as technical manuals. It has also
been adopted by several journal publishers, in-
cluding the American Institute of Physics and the
IEEE Computer Society. And yet SGML has not
won the hearts of content providers everywhere.

1998 September–October 413

When my sonnet was rejected,

I exclaimed, <quote>Damn

the age; I will write for

Antiquity!</quote>—Charles Lamb

When my sonnet was rejected, I

exclaimed, “Damn the age; I will write

for Antiquity!”—Charles Lamb

When my sonnet was rejected, I

exclaimed, "Damn the age; I will

write for Antiquity!"--Charles Lamb

 To: John Keats

Subject: Bit Rot

When my sonnet was rejected, I

exclaimed, "_Damn_ the age; I will

write for Antiquity!" --Charles Lamb

Figure 2. Abstract markup describes structure or function rather than
appearance, so that a single file can be readily adapted to several
purposes. In print, Web and e-mail versions note the differing treat-
ment of quotation marks, emphasized text and the dash.

Maybe it’s just that the name is so forbiddingly
standardized and general, but many consider
SGML unwieldy and cumbersome. The levels of
indirection annoy people. First you define a tag
for a title, then you enter the tag and the title into
the document, then you define how the tagged ti-
tle is to be formatted in the finished output.
That’s a lot of rigmarole when a word processor
allows you to just click on the title and apply the
formatting directly.

A decade ago James H. Coombs, Allen H. Re-
near and Steven J. DeRose of Brown University
wrote an eloquent plea for SGML and other ab-
stract markup languages. They argued that we
all mark up our texts anyway—even convention-
al punctuation is a markup language—so we
might as well choose the style of markup that
captures the most important and long-lived in-
formation. They also argued that inserting ab-
stract tags requires less cognitive effort than do-
ing typographic formatting; it’s easier to
remember “This is a <title>” than “Titles are set
in 28-point Bodoni Bold.” I find the arguments
persuasive, and yet I note that the users of Mi-
crosoft Word still outnumber the users of SGML .

For a time it seemed that SGML might finally
catch on through the reflected glitter of HTML,
which began as a kind of SGML-lite—smaller, sim-
pler and lacking the facility to define new tags. The
hope was that people would learn the advantages
of abstract markup, yearn for something more
powerful, and move up to the mother tongue.
What’s happened instead is that people have gone
to extreme lengths to turn HTML into a visual for-
matting language. They embed text in tables so that
they can control margins and columns; they sprin-
kle pages with hundreds of invisible images to con-
trol the placement of text; in preference to abstract
tags such as <h1> they use a tag.

Abstract markup is going to get one more
chance. A new language called XML, for Extensi-
ble Markup Language, is simpler than SGML but
still retains the ability to define new tags (which
is what makes it extensible). In principle, anyone
can devise a private set of XML tags, but the
main interest is in dialects defined for entire com-
munities or disciplines. For example, there are
groups creating XML variants for mathematics,
chemistry, biological sequence data, astronomy
and meteorology. Farther afield, other XML di-
alects describe real-estate listings, financial data,
classified ads, legal documents and genealogies.

The mathematical dialect, MathML, illustrates
the potential of XML. At one level, MathML ad-
dresses the messy problem of how to display
mathematical expressions on the Web. In HTML
this is often done by embedding scads of minia-
ture images in the page—a solution that works,
more or less, but offends the finer sensibilities.
MathML puts mathematical notation directly into
the markup language. But there’s more to it than
that. MathML can capture meaning as well as ap-
pearance. An expression such as x2 can be written

in such a way that it will be recognized not as “x
superscript 2” but as “the square of x.” The dream
is copying an equation from a published paper di-
rectly into a program such as Mathematica or
Maple, where is can be solved or graphed or ma-
nipulated algebraically. Whether the dream comes
true depends on whether authors accept the disci-
pline of abstract tagging or turn XML into yet an-
other visual formatting language.

Writing Source Code
The problems I’m whining about here—the prob-
lems of keeping a grip on digital text and other
kinds of data as computer technology evolves—
must seem quaint to professional programmers
and software engineers. Moving a data file from
one machine to another is easy compared with
“porting” software. You don’t just take a Windows
.EXE file and try running it on a Macintosh. And
programs are notoriously brittle. A data file may
lose something in translation—such as footnotes—
and yet still be usable. When a program fails, it fails
totally.

Living on such thin ice, programmers learn to
tread carefully. It’s part of their education and
culture. Writing code for keeps is a major theme
of software engineering. Tricks and shortcuts that
solve the problem of the moment are not much
admired if they fail on another platform on in the
next version of the operating system. The em-
phasis is on portability—on program constructs
that work in any computer environment.

Programmers observe a distinction between
“source code,” which is what the programmer
writes and revises, and “object code,” which is the
final product. The Central Dogma of software de-
velopment holds that information flows only from
source code to object code, never the other way
around. Programmers also put a high value on ab-
straction—on expressing concepts in the most
generic way possible. And they are wary of the
dangers of duplication and repetition: They know
that if information is written down twice, the two
copies will eventually become inconsistent.

The same principles and attitudes may apply
just as well to other kinds of computer work. In-
deed, it’s not much of a stretch to see writing with
a word processor or drawing with illustration
software as a kind of programming. The manu-
script I am typing at this moment is not a maga-
zine article but the source code of a program that
can be compiled to produce a magazine article. If
I compile and run the program through a laser
printer, the output is a paper printout. Later the
same source code will be compiled again and run
through a larger machine that produces photo-
graphic film for printing plates. Compiling with
still another set of options yields Postscript files
for distribution via the Web. It all goes smoothly
(most of the time) because the same source code is
the input to all the transformations. If I make a
change to the source, it automatically shows up in
all three object-code versions.

414 American Scientist, Volume 86

Several years ago a book title proclaimed: The
Mac Is Not a Typewriter. Neither is the PC. It’s not
a typewriter; it’s also not a sketchpad; it’s not a
ledger book. It’s a computer. When you sit at the
keyboard, you may think you’re writing or
drawing or balancing the budget, but what
you’re doing is creating computer programs,
which have to be compiled and run before they
yield their output of text or art or spreadsheet.
You may think you’re just a content provider, but
you’re really a programmer.

Bibliography
Coombs, James H., Allen H. Renear and Steven J. DeRose.

1987. Markup systems and the future of scholarly text
processing. Communications of the ACM 30:933–947.

Cover, Robin. The SGML/XML Web Page. http://
www.sil.org/sgml/sgml.html

Mohlhenrich, Janice (editor). 1993. Preservation of Electronic
Formats & Electronic Formats for Preservation. Fort Atkin-
son, Wis.: Highsmith Press.

National Research Council, Steering Committee for the
Study on the Long-term Retention of Selected Scientific
and Technical Records of the Federal Government. 1995.
Preserving Scientific Data on Our Physical Universe: A New
Strategy for Archiving the Nation’s Scientific Information
Resources. Washington, D.C.: National Academy Press.

Rothenberg, Jeff. 1995. “Ensuring the Longevity of Digital
Documents.” Scientific American 272(1):42–47.

Task Force on Archiving of Digital Information (Donald
Water and John Garrett, Co-Chairs). 1996. Preserving
Digital Information: Report of the Task Force on Archiving of
Digital Information. Washington, DC: The Commission
on Preservation and Access and the Research Libraries
Group, Inc. Also available at http://www.rlg.org.

1998 September–October 415

