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E
very Sunday morning you go for a walk in
the city, heading nowhere in particular, with
just one rule to your rambling: You never

retrace your steps or cross your own path. If you
have already walked along a certain block or
passed through an intersection, you refuse to set
foot there again.

This recipe for tracing a loopless path through a
grid of city streets leads into some surprisingly
dark back alleys of mathematics—not to mention
byways of physics, chemistry, computer science
and biology. Avoiding yourself, it turns out, is a
hard problem. The exact analysis of self-avoiding
walks has stumped mathematicians for half a cen-
tury; even counting the walks is a challenge.

My own initiation into the trials of self-avoid-
ance came when I began experimenting with a
simple model of the folding of protein molecules,
a story I told in an earlier “Computing Science”
column (see Hayes 1998). Protein folding is close
to the historical roots of the self-avoiding walk,
which was first conceived as a tool for under-
standing the geometry of long-chain polymer mol-
ecules. A polymer writhing and wriggling in so-
lution forms a random tangle—random, that is,
except that no two atoms can occupy the same po-
sition at the same time. This “excluded volume ef-
fect” in the polymer is modeled by the walk’s in-
sistence on avoiding itself.

Self-avoiding walks have also found applica-
tions elsewhere in the sciences, such as the
physics of magnetic materials and the study of
phase transitions. And they are of interest as
purely mathematical objects. Many of the obvi-
ous questions about them have resisted rigorous
analysis, and so the best answers known so far
come from computer-intensive methods.

All of the walks I shall describe here take
place on a two-dimensional square lattice,
which is a grid of city streets reduced to its
mathematical essence. The lattice consists of all
points on the plane that have integer x and y co-
ordinates. Walks begin at the origin, the point
with coordinates x=0 and y=0. A single step al-
ways moves from the current lattice site to one

of the four nearest-neighbor sites. By conven-
tion the length of a walk, n, is defined as the
number of steps, and so the number of lattice
sites visited is n+1.

 

I Wonder as I Wander
In trying to understand the self-avoiding walk, a
good place to begin is with a walk that doesn’t
bother to avoid itself but lurches over the land-
scape entirely at random. At each step of such a
walk you choose one of the four neighboring lat-
tice sites with equal probability, and move there.
If you repeat this process a few hundred times,
and draw a line behind you as you go, the result
is a scribble with a random but nonetheless dis-
tinctive and recognizable geometry.

How many different random paths can be
traced on a square lattice? They are easy to count.
From any fixed point of origin there are just four
walks consisting of a single step, namely those
going one unit north, east, south or west. On the
second step each of these walks can be contin-
ued in any of four directions, and so there are 16
two-step walks. For every further step the num-
ber of walks is again multiplied by 4, so that the
number of n-step walks is 4n.

An interesting question to ask about random
walks is whether the walker ever returns to the
starting point. Eighty years ago George Pólya
showed that the answer depends on the dimen-
sionality of the lattice. In one or two dimensions
a random walker is certain to come back home if
the walk continues long enough. But three or
more dimensions offer enough room to get lost
in, and a return cannot be guaranteed no matter
how long the walk goes on.

Pólya’s result immediately tells us something
about self-avoiding walks on a two-dimensional
lattice. If a random walk’s probability of return-
ing home is 1, the probability of not revisiting the
origin must be 0. And since the origin is one of
the places that self-avoiding walks avoid, an ar-
bitrarily long self-avoiding walk must be highly
improbable—so rare and exceptional that you
have almost no chance of finding one. This
scarcity is one reason self-avoiding walks are so
hard to study. And yet, paradoxically, another
reason is that they’re so numerous it’s a challenge
to count them all.
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Don’t Look Back
An intermediate stage between a purely random
walk and a self-avoiding walk is the nonreversing
walk. As a recipe for an urban perambulation, it
allows you to go left, right or forward at each in-
tersection, but not to make a 

 

U-turn and go back
the way you just came. Thus a nonreversing
walker on a square lattice has four choices for the
first step, but only three choices for each step
thereafter. The number of n-step walks is 4

 

×3n–1,
which for large n converges to 3n.

Typical examples of random walks, nonrevers-
ing walks and self-avoiding walks can be distin-
guished at a glance. The random walk usually
consists of dense regions, where most of the lat-
tice points have been visited at least once, con-
nected by tendrils through more sparsely settled
territory. A trace of the walk looks something like
a map of towns and cities along a river. The non-
reversing walk is similar but suggests a more
open landscape—perhaps suburban sprawl
rather than the city center. And the trace of a self-
avoiding walk looks not like cities along a river
but like the river itself, or like a coastline.

These differences in appearance are reflected
in quantitative measures of the walks’ geometry.
One important measure is the square of the dis-
tance between the end points of the walk. For n-
step random walks the mean-squared displace-
ment is n; for nonreversing walks it is 2n.
Self-avoiding walks are qualitatively different.
The mean-squared displacement grows as a non-
linear function of n, which appears to be n3/2.

There is another important difference between
random walks and self-avoiding walks. Every
random walk can go on forever; you can always
take one more step. But a self-avoiding walk can
stumble into a blind alley, getting trapped at a
lattice site where none of the neighbors are un-
visited. In other words, sometimes you can’t
avoid yourself no matter how hard you try. On

any given step the probability of getting boxed in
is small—a little less than 1 percent—but if you
extend a walk indefinitely, it is certain to wander
into a dead end eventually. This is another way
of saying that self-avoiding walks are rare and
special; they have to beat the odds to survive.

Counting Your Steps
Just how many distinct n-step self-avoiding
walks can you take on a square lattice? There is
no simple exact formula, analogous to the ex-
pression 4n that enumerates random walks, but
upper and lower bounds can be stated. The num-
ber of self-avoiding walks has to be less than 3n

because that is the number of nonreversing
walks, which include the self-avoiding walks as a
subset. Similarly, it’s easy to construct subsets of
the self-avoiding walks whose numbers grow as
2n; an example is the family of walks that move
only north or east at each step. Thus the number
of n-step self-avoiding walks should lie between
2n and 3n. Tighter bounds than these have been
established, but still the only known way to get
an exact tally is to actually trace out all the n-step
walks and count them.

If you were asked to enumerate all the self-
avoiding walks of, say, 15 steps, how would you
answer? One useful rejoinder would be: Show
me all the 14-step walks and I’ll construct the 15-
step ones. Adding the final step to each walk is
straightforward: Just try each of the four possible
directions, accepting a move if the neighboring
site is vacant, and otherwise rejecting it. Then the
question becomes how do you generate all the
14-step walks, and of course the answer is first to
produce the 13-step walks. This regress continues
back to the 0-step walk, which is just the single
point at the origin.

The procedure is uncomplicated, but the count-
ing itself is arduous. There are 284 walks of five
steps, and 44,100 of 10 steps. By n=15 the number
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Figure 1. Random and nonreversing walks on the square lattice look very different from a self-avoiding walk, which
is necessarily nonbranching. Each walk consists of 1,000 steps; the self-avoiding walk is shown at reduced scale.

trapped!



of walks has reached 6,416,596, and at n=20 it is
897,697,164. The rate of growth is so steep and re-
lentless that merely fine-tuning a program to im-
prove its efficiency yields only a paltry reward.
Counting the walks of n+1 steps takes longer than
counting all the walks from 1 through n steps.

Most of the records for counting self-avoiding
walks belong to A. J. Guttmann and his col-
leagues at the University of Melbourne. As early
as 1972 Guttmann was part of a group (led by
M. F. Sykes of the University of London) that
counted all walks of up to 24 steps. In 1987
Guttmann raised the bar to 27 steps, then later to
29. Others then reached 30 and 34 steps, and
Guttmann’s group went on to 39. Then in 1996,
in an extraordinary feat of computing, A. R. Con-
way and Guttmann enumerated all the self-

avoiding walks through n = 51. There are
14,059,415,980,606,050,644,844 walks of 51 steps.
Performing this computation required an algo-
rithm more sophisticated than the one sketched
here, as well as an Intel Paragon supercomputer
that dedicated 1,024 processors and 10 gigabytes
of memory to the task.

Guttmann’s long series of enumerations yields
an estimate of the asymptotic growth rate in the
number of walks—the rate to which the series
apparently converges in the limit of large n.
Based on the known data, increasing n by 1 mul-
tiplies the number of self-avoiding walks by
about 2.638; in other words, the number of n-step
walks is proportional to 2.638n.

Even though self-avoiding walks are so nu-
merous we can’t count any but the shortest of
them, they still remain rarities among all possible
lattice walks. At n=20 fewer than one walk in
1,200 is self-avoiding. At n=50, the ratio is one
out of 240 million.

Coming and Going
If you look at a complete set of n-step self-avoid-
ing walks, the first thing you’re likely to notice is
a lot of repetition. Many of the walks have the
same basic shape; they differ only by a rotation
or reflection.

On the square lattice any path can be rotated
into four orientations and reflected across four
axes (vertical, horizontal and two diagonals).
Should the results of these transformations be
considered eight distinct walks or eight varia-
tions on a single walk? The answer depends on
what you want to do with the walks, but if
you’re merely counting them, it’s clearly foolish
to count by ones when you can count by eights.
Programs for walk counting generate just one of
the eight configurations, and then multiply to get
the total number.

To eliminate the fourfold rotational symmetry
of the lattice, you can generate only those walks
that start with a step in some particular direction,
say east. The four mirror symmetries disappear if
you consider only walks whose first turn after
the initial step is in one specified direction, say
north. In this way the number of walks to be
counted is reduced to approximately one-eighth
the total number. Why approximately? Because of
one small complication: A straight walk makes
no turns away from its initial direction and is
therefore left unchanged by mirror reflection.
Hence there are only four distinguishable
straight walks instead of eight, and the total
number of walks is reduced by 4.

In the symmetries described so far, walks are
considered to be rooted, that is, one end of each
walk is distinguished as the starting end, as if it
were planted in the ground. In many contexts,
however, the direction in which a walk is tra-
versed has no significance. For example, if you
were folding a polymer along the path of a self-
avoiding walk, you could start at either end of the
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Figure 3. Symmetries reduce the number of unique walks by a factor
of nearly 8. Each of the five three-step paths in the leftmost column
is acted on by three rotations and four reflections, yielding 40 walks
altogether; but for straight walks (first row) the effect of reflection is
the same as that of rotation, reducing the total to 36 walks.

l f r r l f r r l l f f l f r l f r f f r r l l f r l l f r l f r f f r r l l f f l f r

Figure 4. Unrooted walks have an additional symmetry. The two
walks at left would be indistinguishable if the dots marking the
starting points were erased. The walk at right is a palindrome,
with a list of directions that reads the same in either direction.
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Figure 2. Lattice walks can be represented as a list of x,y coordinates,
as compass directions or as left, right and forward commands. The last
representation can also be encoded in a ternary (base 3) number.



walk. Viewing self-avoiding walks as unrooted
paths makes many pairs of walks indistinguish-
able, so that the number of distinct n-step walks is
reduced by a further factor of approximately 2.

I have been unable to find any published liter-
ature on enumerating unrooted self-avoiding
walks, although it seems unlikely I am the first to
consider the problem. The search for a practical
algorithm proved an interesting challenge.

For unrooted walks, two paths through the
lattice are identical if traversing one of them for-
ward yields the same path as following the oth-
er one backward. The symmetry is easiest to un-
derstand when you represent a walk not as a
list of lattice sites or as absolute directions but as
instructions telling you what turns to take at
every intersection along the path. Suppose the
route from your home to your office is abbrevi-
ated [l f r f f], where l stands for left, r for right
and f for forward. (The notation is borrowed
from the turtle graphics system of the Logo pro-
gramming language.) On your way home, if
you want to retrace your steps, you would obey
the turtle-graphics commands  [f f l f r]. The two
lists of instructions are related by a transforma-
tion I shall call retroreflection: The sequence of
letters is reversed, and all the lefts and rights are
interchanged.

In writing a program to enumerate the unroot-
ed self-avoiding walks, the aim is to select one
member of each retroreflected pair and discard
the other. (It doesn’t matter which one is kept.)
The direct solution would be to maintain an
archive of all the walks seen so far. Then as you
generate each new walk, you reverse the list of
turtle-graphics commands, flip the lefts and
rights, and compare the result with the archive of
stored walks, keeping the new walk only if the
retroreflected version hasn’t been seen already.
This strategy would work, but it would be
hideously slow and a memory hog.

There is a better way. The key idea is to trans-
form the list of turtle-graphics commands into a
number, specifically a ternary (base 3) number,
with the digit 0 representing forward, 1 represent-
ing left and 2 representing right. Then every n-step
self-avoiding walk has a unique encoding as an
(n–1)-digit ternary number; equally important,
every (n–1)-digit ternary number specifies an n-
step nonreversing (though not necessarily self-
avoiding) walk. For example, counting in ternary
from 0000, 0001, 0002, 0010 up to 2222 generates
every five-step nonreversing walk. Discarding the
walks that fail a test for self-intersections leaves
just the self-avoiding five-step walks. (In practice,
it’s better to write the walk numbers in “balanced
ternary” notation, where the digits are –1, 0 and
+1; then interchanging left and right is just multi-
plying by –1. Balanced ternary is the only num-
bering system I know that has its own Web page.)

The reason for treating the walks as numbers is
that it imposes a total ordering on them. Given
any two distinct finite numbers, there is always a

larger and a smaller. Likewise, given any two dis-
tinct walks related by the retroreflective symmetry,
one walk’s ternary encoding must be less than the
other’s. This immediately suggests an efficient al-
gorithm for splitting the symmetrical pairs: As
you generate each walk, compare the ternary rep-
resentation with its retroreflection. If the original
number is greater, discard the walk; otherwise
keep it. In this scheme there is no need to maintain
and search an archive of walks; every decision is
made with a single numerical comparison.

Figure 5 gives the number of unrooted self-
avoiding walks of up to 24 steps. As would be ex-
pected, the numbers are approximately one-six-
teenth the number of all self-avoiding walks of the
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1 1 4 
2 2 12 
3 4 36 
4 9 100 
5 22 284 
6 56 780 
7 147 2,172 
8 388 5,916 
9 1,047 16,268 

10 2,806 44,100 
11 7,600 120,292 
12 20,437 324,932 
13 55,313 881,500 
14 148,752 2,374,444 
15 401,629 6,416,596 
16 1,078,746 17,245,332 
17 2,905,751 46,466,676 
18 7,793,632 124,658,732 
19 20,949,045 335,116,620 
20 56,112,530 897,697,164 
21 150,561,752 2,408,806,028 
22 402,802,376 6,444,560,484 
23 1,079,193,821 17,266,613,812 
24 2,884,195,424 46,146,397,316 

n unrooted walks total self-avoiding walks

Figure 5. Exact enumerations show the unrooted walks
are not quite one-sixteenth the rooted ones.
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Figure 6. Connectivity constant measures the average number of sites
available to a walk and determines the rate of growth in the number
of walks. The limiting value for large n is believed to be about 2.638.



same length, and the ratio approaches 1:16 more
closely as n increases; and yet the ratio is not exact.
The reason is another little complication, analo-
gous to the problem of straight walks that are in-
variant under reflection. In this case a class of
walks pass through retroreflection unchanged.
They are the palindromic walks. Consider the
path [f l f r f]; if you reverse the sequence of in-
structions and interchange lefts and rights, you
wind up with the same sequence of commands
again. The path is its own retroreflection. To get a
correct census of the unrooted walks it’s crucial
that such paths be counted once and only once.

Random Thoughts on Self-Avoidance
Unless a new algorithm comes along, exhaustive
enumerations of self-avoiding walks seem un-
likely to advance much beyond the current limit
of n=51. Knowledge of longer walks has come
mainly from random sampling. This process too
is computationally intensive.

For most purposes, a random sample is meant
to be selected with uniform probability from the
set of all n-step self-avoiding walks. Unfortu-
nately, the most obvious algorithm does not yield
walks with this distribution. It’s easy enough to
build an n-step walk one step at a time by choos-
ing directions at random; the question is what to
do if the walk collides with itself before reaching
n steps. The temptation is simply to back up one
step and try another direction, but that practice
leads to a biased sample of walks. To ensure a
fair sample you have to abandon a failed walk
entirely and start over.

My own experiments with random sampling
have relied on the ternary-number representation.
I choose an n-digit balanced-ternary number at
random, then check the corresponding walk for
self-intersections. If the walk fails the test, I gener-
ate a new random number and try again.

Algorithms like this one readily produce large
samples of 60- or 70-step walks, or smaller num-
bers of 100-step walks. As the walks get longer,
however, the proportion of candidates that pass
the self-avoidance test declines sharply. At n=100
you are proposing more than 50,000 walks for
every one that turns out to be self-avoiding. At
n=200 the acceptable walks would be rarer than
one in a billion.

Other algorithms extend the range of explo-
ration into the thousands of steps. Thirty years ago
Zeev Alexandrowicz of the Weizmann Institute of
Science suggested a method called dimerization,
which exploits a divide-and-conquer strategy fa-
miliar in many other areas of computer science.
Dimerization works because it’s much easier to
create two 50-step walks than a single 100-step
walk. You build the two shorter walks, and string
them together end-to-end. Of course the two half-
walks may collide, in which case you have to start
over, but failure turns out to be much less likely
than in the step-by-step technique. The procedure
can be invoked recursively to build the 50-step
walks from 25-step components, and so on.
What’s particularly sweet about this algorithm is
that it lends itself to a very simple and transparent
implementation; I found it easier to get right than
the less-efficient step-by-step methods.

Another technique, called the pivot algorithm,
also goes back 30 years; it was first described by
Moti Lal of the Unilever Research Laboratory
and more recently has been refined and extended
by Neal Madras of York University and Alan D.
Sokal of New York University. The pivot algo-
rithm is quite different from all the others de-
scribed here. It does not actually generate a self-
avoiding walk but instead takes one walk and
transforms it into another. The idea is to random-
ly choose a pivot point somewhere along the
walk, and then rotate or reflect or reverse the
segment on one side of the pivot. If the result is a
self-avoiding path, the move is accepted; other-
wise you choose a new pivot and try again. Suc-
cessive walks in the sequence are highly correlat-
ed, but repeating the transformation many times
wipes out all memory of former configurations.

Rigorous Self-Avoidance
Computational studies of self-avoiding walks
have produced a rich harvest of empirical results.
Theorems have been harder to come by. For ex-
ample, studies of the mean-squared end-to-end
displacement, based on both complete enumera-
tions and on random samples, strongly support
the hypothesis mentioned above that the displace-
ment grows as n3/2. Indeed, everyone “knows”
that this result is correct and exact. But so far no
one has proved it; no one has even proved that
the exponent must be greater than 1 or less than 2.

Rigorous results on the counting of self-avoid-
ing walks are also scarce. The empirical evidence
suggests that for large n the number of walks
grows as 2.638n , but this growth law has not
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been explained from first principles. Until re-
cently, it wasn’t even certain that the number of
walks invariably increases as n gets larger; be-
cause walks can become trapped, it seemed pos-
sible that there might be some range of values
where there are fewer (n+1)-step walks than n-
step walks. In 1990, however, George L. O’Brien
proved that the series increases monotonically.

Even if the asymptotic growth law is correct,
however, it is only an approximation—perhaps
good enough for chemists and physicists but not
wholly satisfying to mathematicians. Ideally, one
would like a formula for calculating the exact
number of walks for any value of n, without all
the laborious counting. Is that too much to ask?
Most likely it is. Conway and Guttmann have
given compelling arguments (though not quite a
proof) that no simple analytic function predicts
the exact number of self-avoiding walks.

Perhaps the absence of such a function tells us
something important about the nature of self-
avoiding walks. The number of walks is perfect-
ly definite and knowable; there is nothing ran-
dom or uncertain about the number of ways to
arrange a nonintersecting path on a lattice. So
why can’t we calculate it? I don’t know the an-
swer, but I would point out that there are many
objects in mathematics that exhibit the same cu-
rious mixture of determinism and unpredictabil-
ity. The prime example is the prime numbers.
Again there is nothing uncertain or statistical
about what makes a number prime, but if there is
any pattern in the distribution of the primes, it
remains totally inscrutable. As with the self-
avoiding walks, there are good approximations
for the number of primes, but no one has found
(or expects to find) an exact formula that will re-
liably point to every prime. This stubborn resis-
tance to total analysis is part of what makes the
primes interesting. Perhaps self-avoiding walks
belong in the same category of perpetually tanta-
lizing mathematical structures.
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