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A
nyone who has ever struggled to fold a
roadmap should have an extra measure
of respect for protein molecules, which

fold up all on their own and practically put them-
selves away in the glove box. Protein folding is so
remarkably efficient that it has been called a
paradox. Thirty years ago Cyrus Levinthal point-
ed out that a typical protein molecule has so
many possible configurations that it would need
eons to explore all of them and find the best
shape; yet proteins fold in seconds.

Looking at the tangled loops and coils of a
folded protein, you might imagine that the
arrangement is haphazard—like a randomly
crumpled map rather than a properly folded
one—but in fact every twist and turn is precisely
specified. Chemically, a protein is a linear poly-
mer, a sequence of the smaller molecules called
amino acids, which are joined end to end like
pop-beads. The sequence of amino acids is the
only information about the protein encoded in
the genes, but the protein can do its job only if
the one-dimensional chain of amino acids folds
into the correct three-dimensional structure. Ap-
parently the sequence alone is enough to guide
the folding. If two protein molecules have the
same sequence, they fold up into the same shape.

One way to gain a better appreciation of the
protein molecule’s knack for folding is to simu-
late it with a computer program. The most de-
tailed simulations track the motion of every atom
and try to reproduce all the chemistry and physics
going on in the system. The ultimate goal is to pre-
dict the native structure of the protein based on
nothing more than the sequence of amino acids.
Unfortunately, that goal is a distant one. The mod-
els require hours of computer time just to simulate
a few picoseconds of molecular dynamics.

I have been exploring a protein model at the
other end of the complexity scale—a minimalist
model, where every aspect of the simulation is
reduced to its simplest possible form. A model so
abstract cannot reveal anything about the struc-
ture of particular protein molecules—it cannot
show how insulin or myoglobin folds—but it

may offer clues to some general principles of pro-
tein folding. For example, one might hope to
learn what kinds of amino acid sequences lead to
a stable and compact molecule.

The great advantage of a really simple model
is that you can solve it exactly, at least for short
chains of amino acids. You can examine every
possible folding of every possible sequence, pick-
ing out the ones of interest. You can know with
certainty which configurations have the most fa-
vorable properties.

Another advantage of a minimalist model is that
you don’t have to be an expert in protein chemistry
or molecular dynamics to play with it. A curious
amateur can write a rudimentary program in a few
days or weeks, and run it on commonly available
machinery. Indeed, the simplified protein struc-
tures are so well suited to the needs of the amateur
that I am tempted to call them amteins—they’re
not quite ready to turn pro yet. However, I have
been persuaded to choose a name slightly less face-
tious, and so I shall call them prototeins.

 

Foursquare Folding
The specific model I’ve been toying with was de-
vised 10 years ago by Ken A. Dill of the Univer-
sity of California at San Francisco, who has con-
tinued to explore it since then with the help of
several colleagues. Almost all of my experiments
merely replicate their earlier work.

Dill’s molecules would not be recognized as
proteins by a biochemist (or by a ribosome, for
that matter). They are radically simplified in
three ways.

First, whereas real proteins are constructed
from 20 kinds of amino acids (which differ in
size, shape, electric charge, affinity for water and
other properties), the building blocks of pro-
toteins come in just two flavors. Dill designates
them H and P, for hydrophobic and polar; the H
units repel water while the P units attract it.

Second, the various forces acting between
amino acids in proteins (electrostatic attractions
and repulsions, hydrogen bonds, solvent inter-
actions) are reduced in prototeins to a single rule:
H’s like to stick together. The P units in pro-
toteins are inert, neither attracting nor repelling.

Third, prototeins do their folding on a lattice,
as if the molecules were laid out on graph paper.
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Think of the H’s and P’s as colored dots placed at
the grid points of the lattice; the chemical bonds
in the backbone of the prototein are lines drawn
on the grid to connect the dots. Confining the
molecules to a lattice is a major computational
convenience. It keeps the number of configura-
tions finite. If the chain could bend and twist in
continuous space, there would be no clear way of
counting the arrangements, and you could never
be sure you had tried them all. Dill and others
have explored several lattice geometries in both
two and three dimensions. My own experiments
all inhabit the two-dimensional square lattice,
which is the simplest.

Dots and lines on graph paper: That’s really all
there is to a prototein. Or else the model could be
described in terms of colored beads, laid down
on a board with a gridlike pattern of dimples to
hold the beads in place. To build a sequence of
amino acids, you string together H-beads and P-
beads in whatever order you choose. To fold the
molecule, you arrange the string of beads on the
lattice board. The string is not allowed to stretch
or break, and so successive beads in the sequence
have to occupy nearest-neighbor sites on the lat-
tice. No two beads can be piled up at the same
site, and so the chain cannot cross itself. If two H-
beads that are not adjacent within the linear se-
quence wind up on adjacent sites after the chain is
folded, their attraction creates a cross-link, or con-
tact, that helps to stabilize the molecule. Foldings
that give rise to many such contacts are favored
over those with few contacts.

Simple and abstract the model surely is—so
much so that you can’t help wondering if the
process of abstraction hasn’t sucked all the life
out of it. The squared-off, flattened molecules
certainly don’t look very biological. But the proof
of the prototein is in the folding.

Self-Avoidance
A program for studying prototeins has two main
tasks to accomplish. The first chore is to generate
all possible sequences of H’s and P’s. This part is
easy; it’s just binary counting. Any prototein se-
quence of length r can be mapped onto an r-bit
binary number, simply by replacing each 1 in the
binary representation of the number with an H,
and each 0 with a P. The complete set of r-bit se-
quences is enumerated by counting from 0 to
2r–1. For example, in the case of r = 5 there are 32
sequences, starting with PPPPP, PPPPH and PP-
PHP, and continuing through HHHHH.

The program’s second task is to generate all
possible foldings of each sequence. This is a little
more challenging. A folding is modeled by a self-
avoiding walk: a path through the lattice that vis-
its no site more than once. The shortest self-avoid-
ing walks are easy to analyze. On the square lattice
there are exactly four self-avoiding walks one step
long, namely the walks that move one site north,
east, west or south of the origin. Each of these
walks can be extended in three different ways to
form two-step walks. The walk that begins with
an eastward step can continue with a second step
to the east, north or south; it cannot go west, be-
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Figure 1. Folded prototein sequences are represented by red and blue beads linked in a chain and arranged on a lat-
tice. The red 

 

H beads form stabilizing contacts (dotted white lines) whenever the folding brings them together as near-
est neighbors; the blue P beads have no such interactions. All the chains here are 21 beads long. The upper panel
shows some of the 107 exceptionally stable foldings of 80 sequences that maximize the number of H-H contacts. In the
lower panel are a few of the other 117,676,504,514,560 combinations of sequences and foldings, selected at random.



cause it would be retracing its own steps, and that
is forbidden. Thus there are 4 

 

× 3 = 12 walks of
two steps each. The same kind of reasoning shows
there are 36 three-step walks. But beyond this
point the counting begins to get messy. Consider
the three-step walk that goes first east, then north,
then west. On the fourth step this walk cannot
turn east, since that would constitute illegal back-
tracking. It also cannot go south, since it would
thereby return to the origin—a site it has already
visited. Hence there are only two available direc-
tions for this particular walk, whereas some other
walks still have three options. It gets even worse:
A walk can box itself in so that there are no legal
moves, and the walk has to be abandoned.

When I began experimenting with algorithms
for self-avoiding walks, I found them so divert-
ing that I thought I might never get back to the
larger project of folding proteins. I could easily
fill up an entire column with self-avoiding
walks—and so that is what I have decided to do.
I will make them the subject of a future column,
and here give only a brief summary of how they
fit into the world of prototeins.

To survey all possible foldings of a prototein of
r beads, you must generate all self-avoiding walks
of r– 1 steps. There is no shortcut for producing
the complete set of walks; you have to enumerate
them all. And each time you add a step, you have
to check to make sure the destination site is not al-
ready occupied. There are tricks for speeding up
the process, but none of them fundamentally
change the nature of the algorithm.

As the walks get longer, the effort of counting
them grows exponentially; adding one step multi-
plies the number of walks by about 2.6. Through a
prodigious feat of computing, A. R. Conway and
A. J. Guttmann have counted all the self-avoiding
walks of up to 51 steps (there are more than 1022),
but for the amateur in self-avoidance the practical
limit is probably between 20 and 30 steps. If your

computer has enough memory, you can store a list
of walks rather than regenerate them for each pro-
totein sequence; this saves a great deal of time.

Symmetries can reduce the number of walks
you need to generate or store. For the purposes of
molecular modeling, taking two steps east and
one step north is no different from going two steps
north and one step west; the paths are the same
but for a 90-degree rotation. When all such sym-
metries are taken into account, the number of
unique walks is cut to approximately 1/16th the
total number. But there are still plenty of walks. At
a length of 15 steps, 401,629 unique walks remain
after all symmetries are eliminated.

Given a procedure for generating binary H-P
sequences and another procedure for generating
self-avoiding walks, it is a simple matter to com-
bine them. The idea is to produce all possible
combinations of sequences and walks, folding up
each sequence into the geometry defined by each
walk. From this collection of folded molecules
you can then gather statistical information—such
as the average number of H-H contacts—or
search for notably good foldings.

High-Scoring Molecules
What makes for a good folding? In proteins the
usual measure is the Gibbs free energy, a thermo-
dynamic quantity that depends on both energy
and entropy. If you could tug on the ends of a pro-
tein chain and straighten it out, the result would be
a state of high energy and low entropy. The energy
is high because amino acids that “want” to be close
together are held at a distance; the entropy is low
because the straight chain is a highly ordered con-
figuration. When you let go, the chain springs back
into a shape with lower energy and higher entropy,
changes that translate into a lower value of the
Gibbs free energy. The “native” state of a protein—
the folding it adopts under natural conditions—is
usually assumed to be the state with the lowest
possible free energy.

Prototeins can get along with a simpler folding
criterion. Standard practice is to rank foldings
simply by counting H-H contacts. It’s more like
keeping score than measuring energy. If the H’s
are viewed as analogues of hydrophobic amino
acids, the scoring system reflects the tendency of
hydrophobic groups to seek shelter from water.
But the prototein model is so abstract that it
doesn’t really matter what kind of force is at play
between the H’s. Just say that H’s are sticky, and
it takes energy to pull them apart. 

One strategy for finding good folds, then, is to
look for configurations that maximize the num-
ber of H-H contacts. A program to carry out the
search runs through all the foldings of all the se-
quences of a given length, keeping only those
foldings with the maximum number of contacts.

How many contacts are possible in a folded pro-
totein? A little doodling on graph paper shows that
the highest possible ratio of contacts to H’s is 7:6.
Sequences that attain this limit are exceedingly
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Figure 2. Spectrum of all possible foldings of nine-bead prototeins
arranges 512 sequences along the horizontal axis and 388 foldings on
the vertical axis. Colors encode the number of H-H contacts, from blue
(zero contacts) through red, orange and yellow to white (four contacts).



rare. (I leave it as a puzzle for the reader to find the
shortest such sequence, which I believe has 26
beads.) But proteins are not required to solve such
mathematical puzzles. To find the stablest configu-
rations of a given sequence, all you need do is find
the foldings that have more H-H contacts than any
other foldings of the same sequence, whether or
not the number of contacts is the theoretical maxi-
mum. There is a shortcut for identifying these sta-
ble foldings. It begins with the sequence made up
entirely of H’s, which is rather like double-sided
sticky tape that collapses on itself in a crumpled
ball. If any sequence at all has a folding with a giv-
en number of H-H contacts, then that configura-
tion must also be among the stablest foldings of
the all-H sequence. In the all-H folding, however,
some of the H’s may not form contacts, and so they
can be changed to P’s without altering the score of
the folding. By making all such substitutions, you
recover the sequence with the minimum number
of H’s that can give rise to a given folding.

Sequences with rigid, heavily cross-linked
folds are fairly rare. Among chains with 21 beads
the maximum number of H-H contacts is 12, and
a chain must have at least 14 H’s to reach this
limit. There are only 80 sequences of 14 H’s and 7
P’s that produce 12 contacts, out of the universe
of more than two million 21-bead sequences.

Figure 1 shows some of the 80 maximally
cross-linked 21-bead prototeins, along with a few
other foldings chosen at random. The two popu-
lations of molecules are very different. The ran-
domly chosen configurations tend to be loose
and floppy, and their average number of H-H
contacts works out to less than 1. The highest-
scoring folds, in contrast, are all very compact,
with the chain either wound around itself in a
spiral shape or folded into zigzags.

A lifelike feature of the compact foldings is a
tendency for the H’s to congregate in the interior
of the molecule, leaving the P’s exposed on the
surface. The model has no explicit rule favoring
the formation of such a hydrophobic core; it hap-
pens automatically when you select foldings
with numerous H-H contacts. In this connection,
Dill points out that for short prototein chains a
two-dimensional lattice model may be more real-
istic than a three-dimensional one. The reason is
that the perimeter-to-area ratio of a short chain in
two dimensions approximates the surface-to-vol-
ume ratio of a longer chain in three dimensions.

Not all features of the high-scoring prototein
foldings inspire confidence in the model’s real-
ism. For example, a disproportionate number of
the best sequences have H’s at both ends, and
these molecules tend to fold up with their ends
tucked into the hydrophobic core. The reason is
easy to see: An H at the end of a chain can partic-
ipate in three contacts, whereas interior H’s can
have no more than two. But the sticky-end effect
is an artifact of the model; there is no comparable
phenomenon in real proteins.

Another peculiarity can be traced to the choice

of a square lattice. Two H’s on a square lattice
can form a contact only if they are separated
within the prototein sequence by an even num-
ber of intervening beads. As a result, every pro-
totein can be divided into odd and even sub-
sequences that do not interact. No such parity
effect is seen in proteins. This failure of realism is
unfortunate; on the other hand, the segregation
of odd and even sublattices allows some very
handy optimizations in a simulation program.

Escaping Degeneracy
Are folds that maximize the number of H-H con-
tacts the best folds for a prototein? Not necessarily.

A high H-H score enhances a molecule’s stability,
which is certainly a useful property in a biopoly-
mer, but there are other factors to consider as well.
Stability implies that once a molecule is folded, it
will probably stay folded. It’s also important, how-
ever, that all molecules with the same sequence fold
up to yield the same structure. The way to achieve
such uniformity is to select sequences that have a
unique best folding, even if that folding does not
have the highest possible H-H score.

A molecule with many equally good foldings
is said to have a degenerate ground state. The
all-P sequence is an obvious example: Every fold-
ing has an H-H score of zero. The all-H sequence
is also degenerate. Obviously, any sequences
with unique preferred foldings must be found
between these extremes, but the existence of such
sequences cannot be taken for granted. You can
search for them by sorting all the foldings of a se-
quence into bins according to their H-H score; if
the highest-scoring bin has a single occupant,
that sequence has a unique best folding.
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Figure 3. Distribution of sequences according to the number of con-
tacts in the best folding is graphed for prototeins of up to 14 beads.
Each curve has a peak in the middle, indicating that sequences with
very good foldings are rare, and so are those with only bad foldings.



On the square lattice, uniquely folding se-
quences do exist for all but one of the chain
lengths I was able to test. (The exception is length
5.) The longest chains I examined have 14 beads.
Among the 16,384 sequences of this length, 955
have a unique folding. Within this subset, 96
foldings have seven H-H contacts, which is the
maximum observed in 14-bead prototeins. The
sequences in this elite subset, combining unique-
ness with high stability, might be considered
among the most lifelike prototeins.

Low degeneracy and numerous contacts are not
the only criteria for judging a prototein fold. Mar-
tin Karplus and Eugene Shakhnovich work with
three-dimensional lattice models and employ a
more realistic energy spectrum than the simple
contact counting of the H-P scheme. Their find-
ings highlight the importance of having a large
energy gap between the best folding and the next-
best one. They have also looked into the kinetics of
folding, asking not just which configuration is sta-
blest but also how long it takes a randomly wrig-
gling molecule to find that conformation. Among
200 candidate sequences, 30 repeatedly discovered
the state of minimum energy after no more than
50 million small random rearrangements.

How Do Proteins Do It?
Although the prototein model is only a crude car-
icature of real protein folding, even this simplified
simulation can be computationally taxing. For
prototeins of length r, the number of sequences is
2r, and the number of foldings is approximately
2.6r–1; the effort needed to solve a model is pro-
portional to the product of these numbers. That
product grows steeply. The five-bead model can
be solved by hand, and a commodity computer
disposes of the 10-bead model in seconds. But a
chain of 15 beads combines 32,768 sequences with
148,752 folds, for a total of almost 5 billion cases.
At 20 beads, the product of sequences and folds is

over 20 trillion, which is way beyond the limit of
this amateur’s patience (and lifespan).

Attacking these models with brute-force com-
putations could turn out to be comically stupid.
Maybe there’s some clever algorithm waiting to
be discovered that will make folding easy. Maybe,
but not likely. In the past few months two groups
have proved that models much like the one de-
scribed here belong in the class of hard problems
known as NP-complete. Bonnie Berger and Tom
Leighton give a proof for the three-dimensional
H-P model. The two-dimensional case is proved
in a quite different way by Pierluigi Crescenzi,
Deborah Goldman, Christos Papadimitriou, An-
tonio Piccolboni and Mihalis Yannakakis.

Showing that a problem is NP-complete
doesn’t actually prove it is hard; NP-complete-
ness merely certifies that the problem is as hard
as a bunch of others, and a method for efficiently
solving any one of the problems could be adapt-
ed to all the rest. Some miraculous algorithm
could sweep the whole class of problems away.
But don’t hold your breath.

Which brings us back to Levinthal’s question:
If protein folding is so hard, how do proteins do
it? There are three kinds of answers.

One possibility is that protein molecules are ca-
pable of mathematical wizardry beyond the reach
of conventional computers. This would stand the
NP-completeness result on its head; instead of
proving that protein folding is hard, it would show
that everything else is easy. You could encode an in-
stance of any NP-complete problem in a synthetic
sequence of amino acids, then let the protein fold it-
self up; from the folded configuration you could
read out the solution to the original problem.

Another answer is that proteins, contrary to
their reputation, do not always fold efficiently and
spontaneously. Some of them need help, in the
form of “chaperone” molecules. Some may fold
erroneously and be recycled by proteolytic en-
zymes. And it’s possible that the native state of
some proteins is not in fact the state of lowest free
energy. A biological molecule doesn’t have to be
absolutely stable; it only has to last long enough to
do its job. Perhaps the appropriate model of pro-
tein folding is not an exhaustive search for the best
conformation but an approximation algorithm
that is guaranteed to quickly find a good folding.
William E. Hart and Sorin Istrail have published
just such an algorithm for the H-P model.

The third option is that proteins do quickly
find the best among all possible foldings, but
only because they have evolved to exhibit pre-
cisely this property. In other words, the only
amino acid sequences that survive under natural
selection are those that happen to fold rapidly.
Sequences that fold hierarchically could fit this
description: If small sections of the chain con-
dense independently into secondary structures
such as helices, which then aggregate without
further internal rearrangement, the combinatori-
al monster might be tamed. Although this mech-
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Figure 4. Sequences with unique best foldings may be among the
most protein-like. For each of these sequences, no other arrangement
yields as many H-H contacts. Among sequences of 14 beads, 96 have a
unique folding with seven H-H contacts. The two foldings at the
lower left are the only ones with no more than eight H’s.



anism cannot explain everything about protein
folding—indeed, Dill argues that secondary
structures are a consequence of compact folding
rather than a cause—it certainly helps. 

In any case, the idea that any arbitrary amino
acid sequence would fold efficiently is surely over-
optimistic—which nixes the fantasy of a protein-
folding computer for NP-complete problems. But
the subset of rapidly folding sequences remains
poorly understood. Computational models, even
simplistic ones, offer a means of probing it.

In this connection it is worth noting that nature
itself has hardly begun to explore the full space of
amino acid sequences. All the proteins in all the
organisms that ever lived on the earth could not
sample more than an utterly negligible fraction of
the 20100 or so possible sequences. Thus a com-
putation something like the ones carried out in
the H-P model is running at this moment, all
over the planet, in the big green computer.
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