

COMPUTING SCIENCE

CAFEBABE

Brian Hayes

A reprint from

American Scientist
the magazine of Sigma Xi, the Scientific Research Society

Volume 85, Number 4
July–Augustl, 1997

pages 304–308

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions,

American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A., or by electronic mail to perms@amsci.org. Entire contents © 1997 Brian Hayes.

An unfulfilled dream of computer science is
the one true programming language,
equally suited to all programs, all pro-

grammers and all computers. In years past com-
mittees and coalitions have tried to create or legis-
late such a language. Algol-60 was one of the first
attempts; its greatest success, ironically, was in
spawning dozens of new languages. A few years
later PL/1 had the powerful backing of IBM. And
the language called Ada had an even more im-
posing sponsor—the U.S. Department of Defense.
And yet these languages too failed to conquer all.

The latest candidate for a computer Ursprache
is a language called Java. This one is not the cre-
ation of a committee or an international stan-
dards board. Its origins are wonderfully humble.
Java began as a language for programming “set-
top boxes,” the gadgets that are supposed to
make TV interactive. So far, set-top boxes haven’t
made much of a splash, but Java has become an
extraordinary marketing phenomenon, with the
kind of promotion and product tie-ins you might
expect of a newly released Star Wars movie.

Do I exaggerate? Well, maybe McDonald’s will
never give away Java trinkets, but Starbucks
might. Barely two years after the language was
introduced, there are Java magazines, Java con-
ferences, Java videos. Usenet has a dozen Java
newsgroups, with hundreds of messages every
day. Java books have become an industry in their
own right. (I review a few of them on page 389 of
this issue of American Scientist). Java businesses
are springing up everywhere—startups and spin-
offs and new divisions of established companies.
And as far as I know, Java is the only program-
ming language ever to have its own venture-cap-
ital fund (initial capitalization: $100 million).

Java’s ambitions extend beyond becoming the
one and only programming language. Java is being
proposed as a new “computing platform,” which
could supplant the various alliances of hardware
and operating-system software that now dominate
the world of desktop computing. In this vision Java
would elbow aside not only C, Pascal, Lisp and
other programming languages but would also re-

place Windows and Unix and the Macintosh oper-
ating system. It would even be built into the “em-
bedded” computers in cellular telephones and
home thermostats (not to mention set-top boxes).

Before presenting my thoughts on the Java phe-
nomenon, I have a couple of disclaimers to put on
the record. In the first place, I have a favorite pro-
gramming language of my own, and it is not Java.
I prefer to code in a dialect of Lisp called Scheme.
Anyone who has followed the computer-language
wars of recent decades will immediately know
that I come from an enemy camp. To make mat-
ters worse, I don’t drink coffee! I am therefore un-
moved by all the subtle appeals to caffeine craving
that turn up in the names of Java products: Roast-
er, JavaBeans, C@fé, Mocha, etc. I will try to keep
my prejudices in check, but the reader should bear
in mind that the following comments come from
someone who doesn’t know his latte from his cap-
puccino, and who sometimes dreads the prospect
of a world overrun by undrinkable beverages and
unthinkable languages.

Platform Agnosticism
The key to Java’s widespread appeal is its
promise of “platform-neutral” computing. As the
Java ads put it (in a trademarked slogan): “Write
Once, Run Anywhere.”

The issue of adapting software to multiple com-
puting platforms is a difficult and important one.
Today, a program intended to reach a broad audi-
ence needs versions for the Macintosh, Windows
95, Windows 3.1, Windows NT, OS/2, at least a few
varieties of Unix, and perhaps other systems as
well. For the programmer, it’s a logistic nightmare.

And it’s not just a programmer’s problem. For
the ordinary consumer, too, the multiplicity of
platforms has costs and risks. It means the soft-
ware you buy today may have to be replaced if
you switch platforms next year. Files you create
on one system may not be readable on another.
And, inevitably, some programs are simply not
available for all platforms.

The compatibility quandary has been with us
from the beginning of computing—or at least
from the moment the second computer was boot-
ed up. But lately the problem has come to be seen
as more urgent. The reason is the Internet and
the client-server model of computing.

304 American Scientist, Volume 85

COMPUTING SCIENCE

CAFEBABE

Brian Hayes

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

If you are browsing the World Wide Web, it
takes only a click of the mouse to transfer a page
of text from a remote machine (the server) to
your own computer (the client). Downloading an
image is equally easy, or a sound file, an anima-
tion, a video clip. So why not click on a link to
have the browser download and run a program?
After all, the machines at both ends of the com-
munications channel are computers. Running
programs is what they do best. If you can read
words, look at pictures, listen to music and watch
TV over the Internet, surely you should be able to
run programs too.

It’s important to be clear about the nature of
the transaction proposed here. Many common
events on the Web cause a program to be run—
but it runs on the server. For example, searching
for a topic on AltaVista or one of the other Web
index sites initiates a database query on the serv-
er machine. Sometimes it would be better to exe-
cute a program on the client computer. Running
an interactive game or simulation on the server
might overtax both the server itself and the com-
munications channel. Downloading the program
code and running it locally could make the soft-
ware much more efficient and responsive.

The problem, of course, is figuring out what
program code to download. Every client plat-
form requires an entirely different instruction for-
mat; code for an Intel Pentium processor is non-
sense to a PowerPC. Even if multiple versions of
the software were kept on hand—like spare parts
for various makes of automobiles—the server
might not be able to identify the client, and so
wouldn’t know which version to send.

Another potential problem with downloading
executable software is security. A program on a
malicious Web site might offer to make you a
millionaire but actually clean out your bank ac-
count. Prudent computers don’t accept programs
from strangers these days.

Java addresses both of these issues. Whereas
programs in most other languages are compiled
into instructions for a specific processor, Java pro-
grams are translated into platform-independent
“byte codes.” The byte codes are then interpreted
by a “virtual machine,” which generally takes the
form of software running on a conventional com-
puter. The same sequence of byte codes can run on
any computer for which there is a virtual machine.

The safety of a Java program is assured in two
ways. First, the virtual machine is constructed as
a kind of padded room, isolated from the rest of
the system, where even a program run amok can-
not do much harm. Second, the incoming byte
codes are examined by a “verifier” before they
are executed, and any program found to break
the rules is rejected.

From Tiny Acorns …
Java was a programming language long before the
World Wide Web was world wide, or even a web.
The project that became Java began in 1990, when

a group at Sun Microsystems, the leading maker
of Unix workstations, set out to explore ways the
company might enter the consumer-electronics
market. A key member of this group was James
Gosling, now a Sun vice president, who was prob-
ably best known at the time as the author of a ver-
sion of the Emacs text editor. Gosling quickly put
together the first version of a programming lan-
guage meant for networked electronic appliances,
such as set-top boxes or video games. The lan-
guage was initially called Oak; the name was later
changed to avoid a trademark conflict.

1997 July–August 305

Java
program

Scheme
program

other
program

Macintosh
computer

Windows
computer

Unix
computer

JavaChip
computer

class file

virtual
machine

virtual
machine

virtual
machine

byte-code verifier

Java
compiler

Kawa
compiler

other
compiler

1997-07 Java F1 compile

Figure 1. The Java language promises “platform-neutral” computing.

The consumer-electronics group at Sun had some
hard years, which is not surprising since the market
they aimed to serve is still inchoate. Then the Web
came along, and suddenly their solution had found
its problem. In 1994 two Sun engineers wrote a Web
browser in Java, a predecessor of the HotJava
browser available today. Then in May of 1995 Sun
publicly released Java as a language for the Internet.

I don’t mean to give the impression that Sun
stumbled into the Java bonanza by blind luck.
The company has a tradition of visionary think-
ing in computer networking. Indeed, Sun’s cor-
porate slogan was “The network is the comput-
er” at a time when I for one didn’t have a clue
what that was supposed to mean.

… Mighty Coffee Beans Grow
Java is a descendant of the C programming lan-
guage, which itself rose to celebrity from modest
origins. C was developed in the 1970s by Dennis
Ritchie of Bell Laboratories. At the outset it was
closely associated with the Unix operating system;
Unix was written in C, and the first C compilers
ran under Unix. Soon the language spread to other
systems. By now it has become so much a part of
the mainstream that few remember just how idio-
syncratic C once seemed. It is a language with a
strict type system—the programmer must declare
in advance what kind of data each variable can
hold—and yet it allows many operations that other
languages prohibit as reckless stunts. A prime ex-
ample is the direct manipulation of “pointers,”
which represent the addresses of data items.

C has a distinctive, terse syntax, heavy on punc-
tuation marks and symbols from the top row of the
typewriter keyboard. Figure 2 gives an annotated
example of what a very small C program looks like.

The main successor of C is C++, a language
created in the 1980s by Bjarne Stroustrup, also of
Bell Laboratories. The name is meant to suggest
“C incremented,” or “a little more than C.” In
fact it’s a lot more—not just C + 1 but maybe
C

× 2. The major addition is a facility for object-
oriented programming, a technique first explored
years earlier in some very different programming
languages, such as Simula and Smalltalk.

Two main ideas lie behind object-oriented pro-
gramming. First, programs are assembled not from
separate data structures and procedures but from
software “objects” that encapsulate both data and
procedures. For example, a triangle object might in-
clude as data the coordinates of its three vertices
and as procedures the methods for finding the tri-
angle’s center, area and altitude. The second idea is
inheritance: Classes of objects are organized into a
hierarchy extending from the general to the specific.
The triangle might be a member of the class of poly-
gons, from which it would inherit properties com-
mon to all polygons. At the same time the triangle
class could be further specialized in subclasses for
right triangles, equilateral triangles and so on.

On the surface, a C++ program looks just like
one in C. But this similarity is deceptive; at the se-

mantic level, algorithms in C++ require a thor-
ough rethinking. Going from C to Java is similarly
tricky. On the surface, again, Java also looks like
the same old C, but underneath all is changed.

Like C++, Java is an object-oriented language.
Indeed, the object methodology is enforced in
Java, whereas the C++ programmer can fall back
into standard C. On the other hand, Java is not a
“pure” object language in the way that Smalltalk
is. In Smalltalk, everything is an object, but in Java
certain elementary data types, such as numbers
and characters, do not have object status—they
are not members of a class hierarchy.

Perhaps the most important change in going
from C or C++ to Java is the abolition of pointers. A
C program steps through the elements of an array
by taking a pointer to the first element—the pointer
is effectively the array’s address in memory—and
repeatedly incrementing it. Java has a special form
for accessing array elements without pointer arith-
metic. Linked data structures in C also rely on
pointers; in a list structure, for example, each item
in the list includes a pointer to the next item, so that
a program can step through the list by following
the chain of pointers. Java provides for linked object
references without exposing the machinery of
pointers or addresses to the programmer.

Another major innovation in Java is automatic
storage reclamation, otherwise known as garbage
collection. If a C program allocates memory to a
data structure, it had better remember to release
the space once the structure is no longer needed, or
all of the computer’s memory could be clogged
with waste. Java programs automatically clean up
after themselves. If an object is no longer needed,
the garbage collector sweeps it up. (I speak of this
mechanism as an innovation because it is new to
the world of C-like languages, but Lisp systems
have had garbage collection since about 1960.)

Two more notable features of Java are excep-
tions and threads. Exceptions are a means for
gracefully handling run-time errors and other
unexpected events. In many languages a simple
routine for reading a disk file can become incom-
prehensible because the normal outcome (where
the file is read successfully) is hidden in a thicket
of statements needed to check for possible errors.
(What if the file doesn’t exist? What if it can’t be
opened? What if it ends prematurely?) Java pro-
grams clear up the clutter by “throwing” an ex-
ception to another routine, which “catches” it.
(Just for the record, “catch” and “throw” are also
Lisp concepts.)

Threads are a mechanism for dividing a pro-
gram into multiple concurrent processes. For ex-
ample, a program searching through a large data-
base might start several threads, each one
looking for a different key. Of course the threads
will truly run at the same time only on a com-
puter with multiple processors, but the Java vir-
tual machine’s scheduling algorithm simulates
concurrency even on a single processor. Java’s
implementation of threads is admirably lucid.

306 American Scientist, Volume 85

A few cosmetic improvements in Java are also
commendable. Java programs are not limited to the
ASCII character set but are written in Unicode,
which accommodates a broader selection of the
world’s (human) languages. Hence a constant can
be named π instead of pi. Also, comments docu-
menting Java programs can employ the tags of Hy-
pertext Markup Language, so that the programs are
easily formatted for readability with a Web browser.

Figure 3 gives the Java equivalent of the C pro-
gram in Figure 2. It still has the same algorithmic
core, but now that core is wrapped in a thick
blanket of object-oriented fur.

All in all, Java seems a distinct improvement over
C, and yet it is not the programming language I
would choose to be stranded on a desert island with.
Its strengths are directed to the needs of the profes-
sional software engineer; it is not so well adapted to
the kind of exploratory or experimental program-
ming whose aim is not to build a software product
but merely to answer a question or calculate a value.
(I suspect that a lot of computing in the sciences is of
this nature.) Java also seems to me less than ideal as a
medium for reasoning about algorithms, and for
teaching some of the fundamental ideas of computer
science. Not that it can’t be used for these purposes; it
simply would not be my first choice.

A world where Java is the only programming
language is therefore not a vision I greet warmly.
But the prospect is not one that keeps me awake
nights. One reason is that even if Java achieves its
most grandiose ambitions—if it becomes the uni-
versal language of computing—it holds within
itself the seed of a new confusion of tongues.
That seed is the Java virtual machine.

The Virtual Machine
The idea of a virtual machine is hardly new to
Java. It goes back to the very origins of computer
science and is one of the many ingenious inven-
tions of Alan M. Turing. The idea is that any suf-
ficiently powerful computer can emulate, or
mimic, any other computer. Such emulation is
not just a theoretical toy. Practical emulators al-
low a Macintosh or a Unix box to dream it is a
PC. Likewise, an emulator allows just about any
computer to act as a Java virtual machine.

The virtual-machine strategy has a simple com-
binatorial advantage. Writing N programs for M
platforms calls for an amount of labor proportion-
al to N × M. With a virtual machine the work need-
ed is N + M. The N operations are needed to write
one version of each program; the M operations
consist of building the virtual machine for each
platform. In the 1970s this approach to software
portability was tried in the P-code system, devel-
oped at the University of California at San Diego.
P-code was intended to be a universal intermediate
language. Compilers for many high-level lan-
guages could generate P-code, which would be
run by interpreters on various computers.

In the case of Java, the intermediate language
consists of byte codes, which make up the instruc-

tion set of the virtual machine. Because there are
just 256 eight-bit bytes, the machine’s repertory of
actions is limited to no more than 256 instructions.
The architecture of the virtual machine is centered
on a “pushdown stack,” where values are stored
while operations are pending. Consider the se-
quence of three instructions iload0, iload1 and iadd,
which Java happens to encode in the bytes whose
decimal values are 26, 27 and 96. The two iload in-
structions push two local variables onto the top of
the stack. Then iadd pops the two numbers off the
stack, adds them and pushes the sum on the stack
in their place. The i prefixed to each instruction
indicates that the operands must be integers; there
are equivalent instructions for other data types,
such as floating-point numbers.

When a Java program is compiled, the output,
called a class file, is not just a stream of byte codes.
The file format includes several additional fields,
structures and markers. For example, every valid
class file must begin with a magic number,
3405691582. (The number seems less arbitrary
when it is written in hexadecimal notation, where
the 16 digits run from 0 to 9 and A to F. Converted
to base 16, the magic number is CAFEBABE.)

The byte-code verifier ensures that a class file has
the right format, and it also runs many checks on
the byte codes themselves. In analyzing the three-
byte program fragment given above, the verifier
would make sure that both of the operands are in-
tegers, and it would prove that the stack cannot
overflow or underflow. These checks enhance the
reliability of Java programs, since type mismatches

1997 July–August 307

1997-07 Java F2 C specimen

main() {

 int count = 0;

 while (getchar() != –1)

 count++;

 printf(count);

}

“main” is the entry
point of a C program

curly braces enclose the code
that implements the function

the function “main”
has zero arguments

declare the variable
“count” of type integer;

initialize it to 0

repeatedly execute
while the expression

 in parentheses is true

read a character; return
true if it is not equal to –1,
which signals end-of-input

shorthand for
“count = count + 1”closing brace ends

“main” and the program print the final value of “count”

1997-07 Java F3 J specimen

class Count {

 public static void main(String[] args)

 throws java.io.IOException {

 int count = 0;

 while (System.in.read() != –1)

 count++;

 System.out.println(count);

 }

}

entry point of the
“Count” class

declare integer
variable “count”;
initialize it to 0

repeatedly execute
while expression

 remains true

read a character;
return true if it is
not equal to –1

shorthand for
“count = count + 1”

print final value
of “count”

end of class “Count”

end of “main”

define a class
named “Count”
“main” is visible

everywhere;
returns nothing

begin class

method definition
begins here

arguments in an
array of strings

in case of error

Figure 2. A program in C counts characters typed at the keyboard.

Figure 3. The character-counting program translated into Java.

and stack failures are errors that would likely cause
the program to crash. The same checks are also the
main line of defense against malicious software.
(Java’s armor against hostile programs has been
found to have a few chinks, but so far most of them
have been flaws of implementation, not design.)

Interestingly, one thing the byte-code verifier
cannot verify is that a class file was actually gen-
erated by a Java compiler, rather than coming
from some other source. Since the format of the
class file has been spelled out in complete detail, a
compiler for another language can emit byte codes
that will be executed by the Java virtual machine
just as if they were authentic Java. Note that these
cuckoo-egg byte codes are subject to the same de-
fenses against malicious programs, since the er-
satz class file has to pass through the verifier. In ef-
fect, the Java language and the Java virtual
machine are completely decoupled. Programs
written in any language can be compiled into byte
codes and run on the Java virtual machine; they
thus gain the benefits of platform independence.
Conversely, Java programs could be compiled for
platforms other than the virtual machine.

Hijacking the Java virtual machine in this way
is not just a hypothetical possibility. Per Bothner
of Cygnus Solutions has written a compiler
called Kawa that translates Scheme—my own
pet language—into Java byte codes. Further-
more, the Kawa compiler is itself written in Java,
so that it will run on any platform that has a Java
virtual machine. Other languages, including
Ada, are being grafted into Java in the same way.

The one nagging doubt about this ruse for fool-
ing the virtual machine has to do with efficiency.
The architecture of the virtual machine was de-
signed to be a good match for typical Java pro-
grams; it is probably less than optimal for very
different languages such as Scheme. But efficiency
is a troublesome issue even for the “100% Pure
Java” that Sun advocates. Compiling a program
into byte codes, rather than into the “native code”
of a specific processor, interposes a layer of inter-
pretation that inevitably slows execution. This
penalty may be acceptable for the occasional Java
“applet” downloaded from a Web site and run
once or twice; it will be intolerable if the major ap-
plications that people work with every day are
rewritten in Java. (Corel Corporation has an-
nounced plans to publish Corel Office for Java, a
suite of Java programs including a word processor
and a spreadsheet.)

Sun’s answer to the efficiency problem is the
JavaChip—a microprocessor whose native in-
struction set consists of Java byte codes. Thus the
virtual machine becomes real, and the overhead
of interpretation is eliminated. But with this vi-
sion Java has come full circle. It is no longer a
bridge between platforms but a new platform
competing with all the others.

Meanwhile, Java has not quite reached the
promised land of platform-independence even
among the existing platforms. The small Java pro-

gram of Figure 3 is one of the first examples given
in The Java Tutorial, by Mary Campione and Kathy
Walrath. The source code is the same for all plat-
forms, but the tutorial’s instructions for running
the program are different for Unix, Windows and
Macintosh computers. What’s worse, the program
also produces different results for each platform!
(The source of these differences is that the pro-
gram counts characters typed at the keyboard,
and line-ends are encoded differently by the three
operating systems.)

Babeling On
Talk of a universal language inevitably brings to
mind that unfortunate incident of the tower. We
tend to read the Babel story as a myth about
hubris: The tower builders were out of their depth
in trying to erect a structure as high as the heavens;
they had undertaken a project beyond their abili-
ties. But the wording of Genesis chapter 11 allows a
different interpretation: “And Yahweh said, ‘If this
is how they have started to act, while they are one
people with a single language for all, then nothing
that they may presume to do will be out of their
reach. Let me, then, go down and confound their
speech there, so that they shall not understand one
another’s talk.’” In other words, the problem was
not that the architects were incapable of raising
such a tower; on the contrary, they had to be
stopped precisely because they would have suc-
ceeded, and then doubtless gone on to even greater
glories. Thus the story seems to be about the hid-
den dangers of good engineering practice. I’m not
sure what that portends for the future of Java.

Bibliography
Arnold, Ken, and James Gosling. 1996. The Java

Programming Language. Reading, Mass.: Addison-
Wesley.

Campione, Mary, and Kathy Walrath. 1996. The Java
Tutorial: Object-Oriented Programming for the Internet.
Reading, Mass.: Addison-Wesley.

Corel Office for Java. <http://officeforjava.corel.com/>.
Gamelan: The Official Directory for Java. <http://

www.gamelan.com/>.
The JavaSoft Home Page. <http://java.sun.com/>.
Kawa, the Java-based Scheme system. <http://

www.cygnus.com/~bothner/ kawa.html>.
Kernighan, Brian W., and Dennis M. Ritchie. 1978. The C

Programming Language. Englewood Cliffs, N.J.:
Prentice-Hall.

Lindholm, Tim, and Frank Yellin. 1996. The Java Virtual
Machine Specification. Reading, Mass.: Addison-Wesley.

McGraw, Gary. 1997. The Java security hotlist.
<http://www.rstcorp.com/javasecurity/links.html>.

O’Connell, Michael. 1995. Java: The inside story. SunWorld
Online. <http://www.sun.com/sunworldonline/
swol-07-1995/swol-07-java.html>.

Speiser, E. A. (translator). 1964. The Anchor Bible: Genesis.
Garden City, N.Y.: Doubleday and Co.

Stroustrup, Bjarne. 1986. The C++ Programming Language.
Reading, Mass.: Addison-Wesley.

Sun Microelectronics. 1996. Picojava I microprocessor core
architecture. <http://www.sun.com/sparc/ whitepapers/
wpr-0014-01/>.

Yellin, Frank. 1996. Low level security in Java.
http://www.javasoft.com/sfaq/verifier.html

308 American Scientist, Volume 85

