
COMPUTING SCIENCE

REINVENTING THE COMPUTER

Brian Hayes

A reprint from

American Scientist
the magazine of Sigma Xi, the Scientific Research Society

Volume 85, Number 1
January–February, 1997

pages 16–20

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A., or by electronic mail to perms@amsci.org. Entire contents © 1996 Brian Hayes.

T
he computing profession has been celebrat-
ing birthdays—the 50th of the ENIAC, the
25th of the microprocessor, the 15th of the

IBM PC (not to mention the imminent birth of HAL
on January 12, 1997). The anniversaries offer an oc-
casion for looking back and marveling at how
swiftly computers have changed. Room-filling
racks of vacuum tubes have collapsed into a sliver
of silicon. A few dollars at Toys R Us buys more
computing power than all the world possessed in
1950. Punch cards, teletype machines and video ter-
minals are all long gone; now we point and click.

But these dazzling transformations in technolo-
gy, economics and the human interface may blind
us to aspects of computing that have changed little
over the years—aspects that may in fact be overdue
for rethinking. There is much about the modern
computer that would have been familiar to the de-
signers of the ENIAC and the EDVAC in the 1940s.
Indeed, computers seem to grow steadily more ho-
mogeneous as the years go by, crowding into one
small corner of a multidimensional “design space.”
Perhaps there is a good reason for this trend toward
uniformity—perhaps this one tight cluster of de-
signs is where all the best ideas are found—but it
seems worthwhile making at least a brief survey of
some of the unpopulated wilderness areas else-
where in the computer design space.

Religious Wars
Of course computers are not really all alike. You
get to choose: Macintosh or Windows or Unix,
or perhaps something slightly exotic, like NeXT,
OS/2, Amiga, VMS, BeOS. I cannot claim neu-
trality in the ongoing hostilities among these fac-
tions; I have my own partisan loyalties. And yet I
cannot help wondering, when I take a few steps
back from the fray, if the present battle for domi-
nation of the desktop will not seem to later gen-
erations about as compelling as the War of Jenk-
ins’s Ear. Looked at from a certain height, most
computers are very much alike.

And it’s not just that they look alike. (Some of
them come in gray boxes now instead of beige!)
Under the skin, computers are remarkably uni-

form in their basic architecture—the way they are
assembled from logical building blocks such as
registers, adders and instruction decoders. Nearly
all computers in widespread use today are recog-
nizable descendants of the von Neumann architec-
ture, named for John von Neumann, who first de-
scribed it in 1945. They have a single processor, a
memory that holds both data and instructions for
the processor, and facilities for input and output.

The longevity of the von Neumann architec-
ture is surprising and interesting, but I want to
consider the computer at a somewhat higher lev-
el of abstraction. The ordinary computer user, sit-
ting down to write a memo or recalculate a
spreadsheet, does not think of the computer as
an assemblage of registers and logic gates. Nor is
it perceived as a box full of silicon chips and sol-
der joints. For the typical user, the fundamental
elements of the computer are less-tangible enti-
ties, such as files, programs, windows, menus, di-
rectories, documents. These are the objects we
work with when we work with computers. Here I
want to focus particularly on files and programs.

A file is the basic unit of information storage in
almost all modern computers. For most of its life, a
file sits inertly on a mass-storage medium such as
a magnetic disk. In this condition, the contents of
the file are inaccessible. To get at the information,
you have to open the file and copy it into random-
access memory (RAM). Once the file is open, you
can read or display it. You can also alter it, but
your changes will be preserved only if you then
save the file, writing it back onto the magnetic disk.
Another important fact about files is that they
have names; you can’t create a file without nam-
ing it, and generally speaking you have to know
the name—or at least recognize it when you see
it—in order to find the file again.

A computer program, from one point of view,
is just a special kind of file. It also resides inertly
on disk most of the time, becoming active only
when loaded into RAM. And, as with other files,
you need to know a program’s name in order to
invoke it. But a program is executed, or run, rather
than opened; it is a file whose content is “machine
code”—instructions for the processor that are
generally indecipherable by the human reader.

Programs and other files are usually organized in
a treelike hierarchy of directories, or folders. Each

16 American Scientist, Volume 85

COMPUTING SCIENCE

REINVENTING THE COMPUTER

Brian Hayes

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

folder can contain not only files but also other fold-
ers, which can contain still more deeply nested fold-
ers, and so on. This “file system” is what is in the
computer, from the user’s point of view.

The concepts of file and program are surely fa-
miliar by now to schoolchildren everywhere and
to most of their parents. Indeed the ideas are so
much taken for granted that it’s hard to imagine
what a computer would be like without them.
But it’s worth trying.

Lost in the Files
Why do files exist, anyway? Look at it from the
program’s point of view. While a program is run-
ning, it can create all kinds of fancy data struc-
tures—arrays, lists, sets, trees, queues, etc.—but
they all disappear the instant the program exits.
The internal data structures are like the thoughts
or memories of a living person; they do not sur-
vive after death. Actually, the program’s predica-
ment is even worse, because a program dies and
comes back to life repeatedly; each time it runs, it
starts with a blank slate. It is as if each night
when you went to sleep, you forgot everything
you ever knew. To cope with such recurrent am-
nesia, you might try leaving yourself a note
where you could find it in the morning. That’s
what a program is doing when it creates a file. A
file is a program’s way of communicating with
its future self.

Historically, the reading and writing of files
have been viewed as input and output opera-
tions. In the early years, files were stored on reels
of magnetic tape, which had to be mounted by
hand when needed. Thus the files were clearly
external to the computer, just as a written memo-
randum is external to your own memory. But the
boundary between inside and outside is not so
sharp today. A disk file may well live inside the
same plastic box as the processor, so that writing
a file no longer really seems like “output.” On
the other hand, you may have instant access to
files kept on a server down the hall or on a Web
site across the continent, so that the whole ques-
tion of where information is stored no longer
seems entirely germane. And if you needn’t care
whether a file is stored on a local disk or a re-
mote one, why should you have to keep track of
whether it is on disk or in RAM?

One answer to this question is that RAM is
“volatile”: It goes pffft when you pull the plug,
whereas magnetic disk memory endures until it is
erased. But this distinction also gets muddled. In a
computer with virtual memory, information that
appears to be in RAM may actually reside on disk;
conversely, with a “RAM disk,” files that seem to
be safely on disk are actually held perilously in
RAM. No wonder that newcomers to computing
often have trouble understanding the difference
between permanent and ephemeral memory.
They labor to create their first computer docu-
ment, and then forget to save the file before
switching the machine off at the end of the day.

This is not to be taken as evidence that users are
losers; on the contrary, it is a hint that something is
awry with the underlying concepts. Perhaps the
flaw is in the desktop metaphor that dominates
most modern computer interfaces. After all, if you
leave a draft of a letter on a real desktop overnight,
it doesn’t vanish when you turn the lights out.

Files bring further problems. Naming them—
even if your computer allows you more than 8 + 3
characters—can be an irksome chore. (In the pa-
per-and-pencil world, you don’t have to dream
up a name for every letter or memo you write.)
You also have to decide where to put a file in the
directory structure. Should you organize your
correspondence chronologically or alphabetical-
ly? A year later, when you’ve forgotten both what
you named the file and where you put it, you dis-
cover the final drawback of file systems: the agony
of retrieval. Even if you know where you’re going
in the tree of folders, getting there may require a
long, tedious sequence of mouse clicks.

Files, folders and the desktop metaphor were
all liberating innovations when they first ap-
peared. The trouble is, they don’t scale well. If
you have only a few hundred files, organization
is easy: You can keep everything on a handful of
floppy disks. With a few thousand files, hierar-
chical folders work well. But after a decade or
two of living in close symbiosis with a computer,
you accumulate tens of thousands of files, and
they become a management challenge. Personal
archives of gigabyte size are no longer unusual,
and the really big data sets—including those col-
lected by astronomers, geophysicists and others
in the sciences—are soaring beyond terabyte ter-
ritory into the petabyte range. You would not
want to explore 1015 bytes of files by clicking
through nested folders. The nature of the prob-
lem is already clearly illustrated by the huge hi-
erarchical file system called the World Wide Web.
I am not the only one who sometimes consults a
search engine such as Lycos or AltaVista to find a
document whose location I already know; the
search is simply quicker and easier than clicking
my way through a series of linked pages.

Persistence
One response to these problems is to graft a new
interface onto the file system. Utility programs
that index and search for files have been prolifer-
ating, as have other shortcuts that keep recently
used or frequently used files ready at hand. The
most sophisticated of these techniques can create
whole new views of the file system on the fly. For
example, even if you routinely organize your cor-
respondence chronologically, you could summon
up a “virtual directory” of all your letters sorted
by recipient. (Virtual directories are an invention
of David K. Gifford and his colleagues at MIT; sev-
eral other groups have explored related themes.)

The more radical approach is to abolish the file
system altogether, and with it the distinction be-
tween permanent storage and ephemeral memory.

1997 January–February 17

Why should files alone have eternal life? Why
can’t you jot down an address or a phone number
and have the note survive, without having to
name it and put it someplace in particular? Why
should every reminder, doodle or Web clipping
require its own named slot in the storage bin?

Looked at from the programmer’s point of
view rather than the user’s, the issue here is the
persistence of data structures. The alternative to a
file system is to give every program the ability to
create objects—a bit of text, say, or a record repre-
senting your rent check—that remain intact after
the program has finished running, or even after
the computer has been turned off. When the pro-
gram starts up again, the objects are present in
memory just as if there had been no interruption.

Several programming languages have long of-
fered a form of persistent data. Smalltalk and
APL, for example, allow you to save a “world” or
a “workspace” and then later reload it, restoring
all variables and other data to their previous
state. But this is an all-or-nothing approach.

More flexible techniques for working with per-
sistent data have been a research topic in com-
puter science for more than a decade. Research
has been particularly active in Scotland, where
persistent-programming systems have been de-
veloped by groups at the universities of Edin-
burgh, Glasgow and St. Andrews. Their work
has drawn on ideas not only from the theory of

programming languages but also from database
theory. This connection is not surprising, since a
database is, in one view, a large collection of per-
sistent, unnamed objects.

The key idea in a persistent-programming sys-
tem is to make longevity an “orthogonal” proper-
ty of data objects; in other words, the same rules
for determining lifetime apply to all types of data,
from the simplest numeric variables to the most
complex record structures. Every object is poten-
tially immortal; its actual lifetime is determined
by an algorithm that throws things away when it
can prove they will not be needed again.

To make persistent programming work, long-
lived data have to be moved at some point to a
nonvolatile storage medium, and obsolete data
must be purged from permanent storage. But
neither the programmer nor the user of the sys-
tem need be aware of these movements. It is
rather like the constant shuttling between disk
and RAM in a virtual-memory system, which
also takes place behind the scenes.

Filelessness
At least one mass-produced computer incorpo-
rates a persistent-object system. It is the Newton
MessagePad, a hand-held “personal digital assis-
tant” made by Apple Computer. Data objects in
the Newton live in a “soup” (that’s the technical
term), where they do not have to be named or

18 American Scientist, Volume 85

Figure 1. “Lifestreams” organize personal documents chronologically. (Image courtesy of Eric Freeman.)

deposited at a specific place in a hierarchy of doc-
uments. For example, when you scribble notes
on a Newton—and “scribble” is the right word,
since you write with a stylus instead of a key-
board—every page goes directly into the soup.
Later you retrieve a note by searching for any
word or phrase it includes. Documents can be
filed away if you wish, but there is no compul-
sion to do so. Nothing is forgotten unless you ex-
plicitly delete it; everything in the soup is equally
accessible at all times.

Another vision of fileless computing comes
from the work of Eric Freeman and David Gelern-
ter of Yale University, who have invented a soft-
ware system they call Lifestreams. In the Life-
streams model, documents are arranged in the
simplest way possible: a one-dimensional, chrono-
logical sequence. Everything you might ever look
at on the computer screen—incoming and outgo-
ing e-mail messages, manuscripts, pictures, video
clips, perhaps programs too—is stacked up from
oldest to newest in one giant heap. At the source
of the stream are your earliest records, going back
perhaps to your “digital birth certificate.” Current
documents are at the front. The stream can even
extend into the future to hold documents that you
will need someday, such as reminders.

At first, the Lifestreams model looks like an
exceptionally primitive file system, without even
the amenity of hierarchical directories. But the
documents in the Lifestream are not files. You
don’t have to name them (although you can if
you wish). You never have to save them; they are
retained as persistent data. You needn’t find a
place for them in a tree of directories; they are
sorted automatically according to creation date.
But what about the problem of retrieval? If you
wish, you can browse forward and backward
through the chronological stack of documents,
but the main means of access is through indexing
and searching. You find documents by issuing a
query, rather like a command in Go Fish!: “Give
me all your letters to Bill written after November
5.” In response to the query, the system creates a
substream consisting of just those documents
that satisfy the stated criteria. In this respect the
Lifestreams system is much like a database, but
there is a further refinement. The substream itself
is a persistent object, which remains active indef-
initely. If you later write another letter to Bill, it
will automatically appear at the head of the sub-
stream as well as on the main Lifestream.

Freeman has built Lifestreams prototypes for
Unix workstations and also, significantly, for the
Apple Newton.

The idea of a computer without files is not as
big a departure as it might seem. In the first place,
files are an abstraction, or even an illusion, in
modern computers. We may imagine that a file
occupies a definite place on a disk, adjacent to
other files in the same folder. In reality, the disk
sectors that comprise any given file can be scat-
tered randomly over the surface of the disk. For

the lower-level software that actually communi-
cates with the disk drive, files do not exist.

Furthermore, fileless computers are all around
us; we just don’t notice them much. They are the
“embedded” computers that run appliances, au-
tomobiles and even some of the peripheral de-
vices (such as modems and keyboards) attached
to other computers. Few embedded computers
have any need for a file system.

Deprogramming
Perhaps we can hope to abolish files, but pro-
grams are not to be swept away so categorically.
A computer without programs is like a car with-
out fuel: at best an object of quiet contemplation.
Nevertheless, there may well be opportunities to
change the way programs are built and distrib-
uted, and the way they cooperate with one an-
other. Under present practice, a program is an in-
divisible, monolithic, opaque hunk of machine
code, which must be swallowed whole or not at
all. It is a black box, which accepts inputs and
produces outputs, but which cannot be opened
up to see (or change) how it works.

A new software technology offers hope of
greater flexibility: It may not pry the lid open, but
it could divide the one big box into several smaller
boxes we can rearrange as needed. The govern-
ing metaphor is the component audio system. Just
as you hook up a tuner from one manufacturer
with an amplifier from another and speakers from
a third, you should be able to link together soft-
ware components from different sources, and
have them all work on the same document.

This basic idea has been known under a vari-
ety of names, but recent attention has focused
mainly on two schemes called OpenDoc and Ob-
ject Linking and Embedding (OLE), introduced
by Apple and Microsoft respectively. What they
offer amounts to a change of perspective. Today
the program is the central fixture around which
the computing universe revolves; you launch a
program and then use it to create or edit various
satellite documents. OpenDoc and OLE are
meant to put the document rather than the pro-
gram in the middle; you create a document and
operate on it with whatever programs are need-
ed, calling on different software components for
working with words, pictures, calculations, etc.

The idea of combining many small programs
to accomplish a task is hardly new. The Unix
community has long favored “little” programs
called filters, which can be linked in sequence.
But Unix filters are largely confined to working
on text files, with a very simple interface between
one program and the next. The new schemes are
meant to allow tighter integration of programs
and a more interactive style of computing.

Even if OpenDoc and OLE live up to their
promise, something vital remains missing. What
distinguishes the computer from other machines
is its programmability, but few users ever write a
program. No doubt the main reason is that few

1997 January–February 19

are inclined to learn the arcana of the program-
mer’s art, but it’s also fair to say that most cur-
rent computer systems do not encourage tinker-
ing. A word processor or a spreadsheet comes
with the software equivalent of a sticker that
reads: “No user-serviceable parts inside.” If you
don’t like some detail about how the program
works, your only option is to write a new one
from scratch.

OpenDoc and OLE will not change this situa-
tion substantially for Macintosh and Windows
users. Writing an OpenDoc or OLE component
will not be much easier than writing a stand-
alone program. The Unix world has traditionally
been friendlier to the inquisitive or meddlesome
programmer. At one time every Unix system
came with complete source code, as well as the
compilers and other tools needed to rebuild or
modify the system. But today most commercial
Unix systems do not include source code, and
programming tools are an extra-cost option. (The
remarkable Linux operating system, which be-
gan as the project of a single young programmer,
Linus Torvalds, probably owes part of its popu-
larity to its distribution with full source code.)

The computers that most clearly invited tin-
kering were the “Lisp machines” of the 1970s
and 80s. Virtually all of the software for these
computers was written in Lisp and was open to
inspection and modification. The rule was: If you
don’t like the way it works, shut up and fix it. For
a while two companies (Symbolics and LMI)
were making rival Lisp machines; both compa-
nies failed, although Symbolics has lately come
back from the dead. There have been a few other
attempts to build a language-centered computer.
The Xerox Palo Alto Research Center created sev-
eral machines programmed in Smalltalk; the
Lilith computer, created by Niklaus Wirth, was
based on Modula-2.

The commercial failure of Lisp machines is
generally attributed to an economic squeeze: The
generic hardware of mainstream computers soon
offered better performance for less money, even
for programs written in Lisp. And yet the dream
of a single language for all computers will not go
away. The latest embodiment of this ideal is the
Java computer. Java was conceived as a language
for programming “set-top boxes,” the devices
that are meant to bring interactive network com-
puting to your television set; the language has
since experienced a tremendous surge of interest
as a medium for distributing “applets,” or small
application programs, over the Internet. Several
computer operating systems already have a Java
interpreter built in, and specialized hardware for
running Java programs is under development.

The Secret Lives of Computers
Most likely, none of these radical new ideas—nor
the radical old ones!—will catch on. It’s a good bet
that computers will grow more and more alike,
distinguished by minutiae that only a marketing

manager could get excited about. This seems to
be the way that technologies evolve and mature.

Look back at the early history of the automo-
bile. At the outset there were cars propelled by
steam, by electricity, by diesel and gasoline en-
gines; there were two-wheelers, three-wheelers
and four-wheelers; some were steered with a
tiller and some with a wheel; some had hand-
brakes and some footbrakes; the engine might be
in front or in back or in the middle. That diversi-
ty has disappeared. Apart from rare industry up-
heavals—such as the switch from rear-wheel to
front-wheel drive some years back—cars don’t
change much. Today there are many makes of
automobiles, but few choices in technology.

Radio has gone through a similar loss of
species diversity. Radio enthusiasts of the 1920s
could choose among the regenerative, the super-
regenerative and the superheterodyne circuits.
But one of those designs (the superheterodyne)
drove the others to extinction. What is more to
the point, no one today takes the least interest in
how a radio works. (If you go to a store to buy
one, don’t bother asking the clerk if it has a su-
perheterodyne circuit.)

Will the computer meet the same fate? Will it
become an appliance or a commodity? Will it, in
other words, become boring? That’s the direction
the industry is heading in, but I can see two glim-
mers of hope. The first glimmer is institutional:
Computer science, as a discipline, is gleefully
undisciplined; there is still plenty of willingness
to explore the occasional screwball idea. The sec-
ond glimmer is theoretical: The computer has a
protean quality not shared by any other machine,
certainly not by automobiles and radios. Just
about any computer can put on a convincing im-
personation of any other computer. This talent
for emulation commonly allows a fancy Macin-
tosh or Unix workstation to masquerade as a
plain-vanilla Windows machine, but it can work
the other way around as well. Perhaps we will all
end up with the most prosaic of computers, but
some of them may lead secret lives of adventure
and romance.

Bibliography
Adler, Richard M. 1995. Emerging standards for compo-

nent software. IEEE Computer, March 1995, pp. 68–77.
Atkinson, M. P., P. J. Bailey, K. J. Chisholm, P. W. Cockshut

and R. Morrison. 1983. An approach to persistent pro-
gramming. The Computer Journal 26:360–365.

Freeman, Eric. 1995. Developers corner: Lifestreams for
the Newton. Mobilis: The Mobile Computing Lifestyle
Magazine. <http://www.volksware.com/mobilis/
october.95/ develop1.htm>

Freeman, Eric and David Gelernter. 1995. Lifestreams: A
storage model for personal data. ACM SigMOD
Bulletin 25(1):80–86. <http://www.cs.yale.edu/homes/
freeman/papers/SIGMOD/paper.ps>

Gifford, David K., Pierre Jouvelot, Mark A. Sheldon and
James W. O’Toole, Jr. 1991. Semantic file systems. In 13th
ACM Symposium on Operating System Principles, October
1991. <http://www.psrg.lcs.mit.edu/ftpdir/pub/
papers/sfs.ps>

20 American Scientist, Volume 85

