
330 American Scientist, Volume 84

COMPUTING SCIENCE

THE WAY THE BALL BOUNCES

Brian Hayes

A reprint from

American Scientist
the magazine of Sigma Xi, the Scientific Research Society

Volume 84, Number 4
May–June, 1996

pages 331–335

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A., or by electronic mail to perms@amsci.org. Entire contents © 1996 Brian Hayes.

The billiard ball rolls smartly along the
baize, aimed for another ball at the far end
of the table. The player watching its trajec-

tory anticipates the solid tlock! of contact, to be
followed by the familiar textbook demonstra-
tion of the conservation of energy and momen-
tum. But something has gone awry on this bil-
liards table. The moving ball passes right
through the stationary one, without altering its
own motion or disturbing the repose of its tar-
get. And then the rolling ball glides wraithlike
through the rail at the edge of the table and con-
tinues imperturbably sailing across the room,
with no inclination to fall to the floor.

What’s going on here? It’s not quantum tun-
neling; it’s a failed computer simulation. On a
real billiards table, collisions just happen.
Billiard balls require no special instrumentation
to detect each other’s presence; they simply
obey the “law of nature” that says two solid
bodies cannot occupy the same space at the
same time. You might think that a simulated bil-
liard ball could be made to behave in the same
way—that it could be given the property of
solidity, so that it would automatically rebound
from obstacles. But such autonomy of action is
an illusion in the land of computer simulation.
When you create a simulated world, nothing
falls to earth unless you remember to turn the
gravity on. Nothing bounces unless you tell it
exactly where and when to bounce.

This need for continual supervision and inter-
vention may come as a surprise if you know the
art of simulation only by observing inputs and
outputs. From the outside, a physics simulation
looks like a clockwork universe, which can be
set ticking and left to work out its own destiny.
Events inside the computer seem to unfold just
as they do in nature, following the same rules of
cause and effect. Accordingly, you come to
expect a one-to-one mapping between processes
in the physical world and algorithms in the sim-
ulated one. But much of what goes on inside a
simulation has no counterpart in the real world.

In pointing out this disparity between real
and virtual physics, my aim is not to question

the validity of computer simulation as a tool in
science and engineering. Simulation is a valu-
able and productive technique; I dabble in it
myself. But I am intrigued as I continually redis-
cover that what looks effortless in nature can be
so laborious to compute.

The Naive Algorithm
The problem of detecting when two objects
touch or overlap comes up in many computa-
tional contexts. It is the major challenge in plan-
ning the motion of robots and computer-con-
trolled machine tools. It is also the crucial step
in studies of molecular “docking,” such as sim-
ulations of how an enzyme binds to its sub-
strate. Video games and computer animation
also rely on algorithms for collision detection.
Another obvious example is the simulated crash
testing of automobiles. Still, the most conve-
nient place to continue our study of the basic
issues is at the billiards table.

The naive algorithm for simulating bil-
liards—“naive” in the sense that it’s the first
thing that pops into my head—goes like this. At
some initial instant t0 we know the positions
and velocities of all the balls on the table. We
plug these numbers into the equation of motion
for each ball to find its position and velocity at a
future time, t0+∆t. The results serve as the start-
ing data for another iteration of the same
process. Continuing in this way, we calculate a
sequence of snapshot images, showing the state
of the system at successive intervals of ∆t.

In the simplest model of billiard dynamics,
the equation of motion for each ball is just
x = x0+v∆t. (Here the boldface variables x and v
are vector quantities, representing the position
and the velocity of the ball on the surface of the
playing table.) A more sophisticated model
would include the effects of friction, angular
momentum and aerodynamics, which would
complicate the equation considerably but would
not change its nature in any fundamental way; x
and v would remain well-defined functions of t.
But even with the most elaborate equation
describing each individual ball’s motion, we are
still playing ghost-billiards, with balls that slide
through each other and drift off the table.

To make the balls bounce, we have to encum-
ber the algorithm with a deliberate check for

1996 July–August 331

COMPUTING SCIENCE

THE WAY THE BALL BOUNCES

Brian Hayes

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

collisions after every time step. That is, whenev-
er we move a ball to a new position, we have to
calculate its distance from every other ball on
the table. If the distance, measured center-to-
center, is less than or equal to the sum of the
two balls’ radii, a collision has occurred, and we
need to do something about it. (We also need to
watch for collisions with the edges of the table
and with other fixed obstacles, but these com-
plications will be neglected here.)

Several aspects of this algorithm call for com-
ment. First there is the matter of efficiency—how
the amount of computation needed varies as a
function of n, the number of balls on the table.
The equation-of-motion part of the algorithm is
said to have O(n) efficiency, meaning that the
effort is simply proportional to n. Doubling the
number of balls doubles the number of velocity
and position calculations. The collision-detection
part, in contrast, is classified as an O(n2) algo-
rithm: Because each ball might conceivably col-
lide with any other ball, the effort rises as the
square of n. Doubling the number of balls brings
a fourfold increase in computational labor. (To
be precise, the number of possible collisions is
(n2 – n)/2, but the “big-O” notation of computer
science neglects everything but the leading term
of such a polynomial.)

The difference between an O(n) algorithm
and an O(n2) one might not matter much on a
pool table (where n is never greater than 16), but
it becomes critical when there are thousands or
millions of interacting objects, as in a molecular-
dynamics simulation. A number of program-
ming tricks can lighten the computational load.
For example, a program might partition the bil-
liards table into several square blocks and look
for collisions only between balls that lie within
the same block or in adjacent blocks. But this
gain in efficiency has a steep cost in program
complexity; moreover, even with such a strate-
gy, collision detection remains the most expen-
sive phase of the algorithm.

And inefficiency isn’t the only drawback of the
naive algorithm; what bothers me more is that
the method of detecting collisions seems artifi-
cial—perhaps one might even say unnatural. If
the purpose of a simulation is to help us under-
stand events in the real world, then the simula-
tion should not only yield correct answers but
should also mimic the natural process as closely
as possible. The equation-of-motion part of the
simulation passes this test: It’s not too outra-
geous a metaphor to say that nature is evaluat-
ing the equation of motion of each ball at each
instant to determine the ball’s next position. But
surely there is no process in nature that resem-
bles the naive collision-detection algorithm. A
ball on a billiards table does not have to stop and
look around before it moves, checking the dis-
tance to every other ball on the table. Real bil-
liard balls are blind; they don’t sense each
other’s presence until they touch.

A final complaint about the naive algorithm is
that it simply doesn’t work! Generally, by the
time a collision is detected, the balls have already
penetrated each other’s volume. (One thing real
billiard balls never do is overlap and then back
up in order to properly collide and rebound.)
Worse, in some cases the algorithm may miss a
collision altogether. If the balls are not touching
at time t and they are again not touching at t+∆t,
there is no way of knowing that they passed
through each other at some moment between
these times. The cure for all these ills is to reduce
∆t, but that is computationally costly. You wind
up watching the whole movie in extreme slow
motion. Sophisticated algorithms adjust ∆t
dynamically, taking large time steps when the
balls are far apart and smaller ones when they
come closer, but as with the partitioning of space,
there is a cost to be paid in program complexity.
And the results are never exact except in the limit
where ∆t goes to zero.

Mathematics to the Rescue
A mathematician looking at the naive algorithm
might well recoil in disgust. Why make such a
laborious and plodding effort to find the
approximate moment of collision, when there is
a perfectly well-defined procedure for identify-

332 American Scientist, Volume 84

Figure 1. Failings of the naive algorithm include unphysical inter-
penetration (top) and missed collisions (middle). The cure is to
reduce ∆t (bottom), but this is computationally expensive.

ing the exact place and time that two balls come
together? It’s just a matter of solving some
simultaneous equations.

Suppose two pointlike particles are moving in
straight lines on an infinite plane. Their paths are
described by equations of the form y = Ax+B,
where A and B are constants. The point at which
the two paths cross (if indeed they do cross) can
be found by any of the methods taught in elemen-
tary algebra for solving two simultaneous linear
equations. This crossing point is not necessarily a
point of collision, however, because the two parti-
cles may not arrive there at the same time. To
detect collisions, we have to examine the parti-
cles’ trajectories in space-time, where the parame-
ter t is treated as if it were just another spatial
dimension. Thus if the two trajectories share a
point with identical x, y and t coordinates, the
particles collide at that space-time point, or event.

This algebraic approach to the collision problem
has some very pleasant properties. Because there
is no need to step through time in units of ∆t,
detecting a distant collision is just as quick and
easy as finding a nearby one; the algorithm wastes
no time on the monotonous intervals between col-
lision events. Furthermore, if all the calculations
are done with sufficient precision, and if the coeffi-
cients A and B are rational numbers, then the
coordinates of the collision can be determined
exactly rather than approximately. Getting exact
results is often important in geometric problems,
since small errors tend to accumulate.

The algebraic method also has some trou-
bling complications and potential weaknesses.
In the first place, billiard balls are not point par-
ticles; they have a nonzero radius. Hence their
trajectories do not cross at a single point, and
devising a reliable procedure to find the first
point of contact requires considerable care. Also,
the roundness of the balls introduces points
with irrational coordinates, which means that
computations can no longer be numerically
exact. Curved paths and accelerated motion
(which make the equations of motion nonlinear)
bring similar complications.

Then too, the algorithm must deal with more
than two balls on the table. As with the naive
algorithm, O(n2) possible collisions have to be
considered. Suppose a simulation program
examines the balls in numerical sequence when
predicting their future collisions. It finds that
ball collides with at time t, whereas balls
and collide at a later moment, t+α. Can the
program now place these two predicted colli-
sions on the schedule of events to be simulated?
No, because and , on the rebound after time
t, might interfere with the motion of and
before t+α. Indeed, some other ball, whose path
has not yet been computed, might come along
and disturb or before time t. To avoid errors
of this kind, the program must first catalogue all
the potential collisions, then sort them in
chronological order, and simulate only the earli-

est predicted event. Once the new trajectories
are established after this event, the complete
O(n2) collision analysis has to be repeated.

Even with this handicap, the algebraic
method can be quite efficient, and it yields
results of high accuracy. But I have a hard time
seeing in it any clue to how nature plays bil-
liards. Are we to imagine some physical process
that looks into the future, tabulates all possible
collisions, sorts them into their proper sequence,
and finally enacts the earliest predicted event?
There is some question whether such a method
of analysis ought to be called a simulation at all.
It does not evolve over time to reveal an out-
come, as the real world seems to do; instead it
jumps ahead to discover a solution and then
returns to the present to construct the sequence
of states leading to that solution. Some people
might call that cheating.

Physics to the Rescue
A physicist looking at the billiards problem
might suggest a very different approach. From a
physicist’s point of view, a suspect element of
the entire simulation is the supposed “law of
nature” declaring that two solid bodies cannot
occupy the same place at the same time. This
notion is not in fact a fundamental law but
instead emerges as a consequence of deeper
principles. Solid bodies do not overlap or inter-
penetrate for a reason—namely because short-
range repulsive forces keep atoms and mole-
cules apart. A physics-based billiards simula-
tion would focus on these forces.

To the casual observer, two billiard balls
rolling across a table are utterly oblivious of each
other’s presence until they make direct contact,
at which point they instantly change direction.
But the collision and rebound cannot be truly
instantaneous, for that would imply infinite
acceleration. For an alternative model of how bil-
liard balls bounce, consider two electrons on a
collision course. Each electron is surrounded by
an electric field, which the other electron detects
and responds to even at a distance. As the two
particles approach, the repulsive forces generated
by these fields grow stronger, and so the elec-
trons are deflected before they ever touch.

1996 July–August 333

Figure 2. An algebraic method solves pairs of simultaneous equa-
tions to identify collision events. Only the earliest collision is
retained (here between a yellow ball and a red ball).

A simulated game of electron billiards is just
an approximate solution of the classical n-body
problem. The simulation works something like
the naive algorithm for billiards, in that snap-
shots of the system’s state are calculated at inter-
vals of ∆t, but there is no need for a special colli-
sion-detection procedure. Instead, the forces act-
ing on each particle are summed up at each time
step; from the forces the acceleration can be cal-
culated, and the acceleration in turn yields a
new velocity and position. Strictly speaking, no
particles ever collide; as they get closer, the
repulsive forces between them increase sharply,
and so they smoothly and veer away.

The physicist’s algorithm shares certain draw-
backs of the naive algorithm. In particular, choos-
ing ∆t wisely is just as crucial if you want to get
sensible results in a reasonable amount of time.
The interval between snapshots has to be short
enough that the fields and forces do not change
drastically during a single time step; otherwise
two electrons might stray closer than they would
in the real world, generating implausibly large
forces and velocities. Also, the n-body method is
another O(n2). Nevertheless, the algorithm does
seem somewhat more realistic as a model of how
particles interact in nature. Just as evaluating an
equation of motion seems like a fairly “natural”
computation, summing up the forces acting on a
body corresponds closely to processes that
appear to go on in the real world.

The physicist’s algorithm works well for sim-
ulating the motions of electrons or atoms. It has
also proved effective in astronomical contexts,
where the “particles” are stars or galaxies, and

the dominant force (gravitation) is attractive
rather than repulsive. But what about billiard
balls? In principle their interactions can be
described in the same way. Near the surface of a
billiard ball, an electrostatic field repels other
matter; this field is the underlying reason that
colliding balls bounce. The trouble is, the field
has an extremely short range. At macroscopic
distances the field is effectively zero, and it
remains negligibly small until you approach to
within a few atomic diameters of the ball’s sur-
face; then it rises steeply to become a powerful
repulsive force at the surface itself. With a force
that has such an abrupt onset, all the advan-
tages of smoothness and continuity are lost.

The Lattice World
Many of the troubles that beset computer simu-
lations stem from the need to chop up the con-
tinuum of space-time into byte-size pieces. Some
of the algorithms mentioned above address this
issue directly. The mathematician’s algorithm
effectively restores the continuity of time, by
identifying the exact moment of a collision. The
physicist’s algorithm imposes a different kind of
continuity by turning discrete collision events
into gradual interactions. Curiously, the opposite
strategy can also help: Insisting on the discrete-
ness of both space and time creates a world
where billiards is a good deal simpler to simu-
late. The idea is to play billiards on a lattice.

In the simplest case the lattice is a grid of
evenly spaced lines parallel to the x and y axes.
Billiard balls can occupy only the lattice points
where grid lines intersect; intermediate posi-
tions are nonexistent. Time is quantized in a
similar way, so that the state of the system
evolves in discrete jumps. A ball can move only
by hopping from one lattice site to another.

In lattice billiards, two balls collide if they
occupy adjacent lattice sites at the same time.
This rule makes collision detection remarkably
simple, reliable and efficient. To find out if a ball
is colliding with any others, you merely have to
look at the four neighboring sites to see if any of
them are occupied. Note that this is an O(n)
process, since the number of operations needed
is directly proportional to n. Moreover, if ∆t is
kept small enough that no ball can move more
than one lattice spacing in a time step, there is
no hazard of ever missing a collision or having
two objects improperly overlap.

A particularly elegant way of writing a pro-
gram for lattice billiards begins with the abstract
computational model called a cellular automa-
ton. Here the universe is not only divided into
discrete lattice sites, or cells, but in addition
each cell is equipped with its own internal com-
puter to calculate the cell’s future states. Thus
where other schemes turn billiard balls into
intelligent agents, computing their own trajecto-
ries, the cellular-automaton model makes the
billiard table the seat of intelligence. The individ-

334 American Scientist, Volume 84

Figure 3. Physicist’s billiard balls are surrounded by interacting
fields, so that they smoothly repel one another without touching.

Figure 4. Lattice model confines the balls to a set of discrete points,
making collision-detection easy. But the real world is not a lattice.

ual cells need little computational power; they
merely look at their own present state and at the
states of a few near neighbors to decide on a
next state. All the cells apply the same rule in
making this decision; computers throughout the
lattice run the same program in lockstep.

In the case of a billiards simulation, the most
conspicuous aspect of a cell’s state is whether or
not it is occupied by a billiard ball. A cell’s inter-
nal instructions for computing its own next state
might go something like this: If you are current-
ly empty but the cell on your left is occupied,
then in the next time step be occupied; if you are
currently occupied and the cell to your left is
empty, then in the next state be empty.
Applying this rule consistently in all the cells
allows balls to roll across the array from left to
right, at a speed of one lattice site per time step.
A complete rule that provides for other direc-
tions of motion and for collisions is more com-
plicated, but the basic principles are the same.

Not only can this primitive computer simulate
billiards; what’s more remarkable is that the simu-
lated game of billiards can in turn simulate any
computer! It turns out that billiard balls bouncing
around a tabletop can be interpreted as imple-
menting the AND, OR and NOT functions of Boolean
logic. A place on the table where two trajectories
cross—where a collision will take place if two balls
are traveling those paths at the same time—repre-
sents a logic gate. The gate has a logic value of
TRUE if the two balls collide and is FALSE otherwise.
By properly arranging many such gates one can
build a universal computer—a machine that can
emulate any other digital computer. Thus a PC
might emulate a cellular automaton emulating a
billiard-ball computer emulating a PC.

If only the real world were built on a lattice!
Computing would be so much easier, simulation
so much more direct. The integers would supply
enough numbers for all computational purposes;
there would be no need for the infinitesimal intri-
cacies of the real number line. A simulation could
set up a one-to-one mapping between addresses
in the computer’s memory and places in space,
between ticks of the computer clock and the pro-
gression of time. But alas the real world does not
have a lattice structure, or at least none is visible
at any scale yet probed by experimental physics.

Lattice models have proved useful anyway.
For instance, there have been interesting and
fruitful explorations of knot theory on a lattice,
and studies of how proteins and other polymer
chains would fold if they were confined to a lat-
tice. Perhaps the most celebrated examples are
lattice studies of the force that binds together
quarks inside subnuclear particles. The quark
models attempt to recover the continuum by
looking at what happens as the lattice spacing
shrinks toward zero. Unfortunately, that strate-
gy may not always work, because some proper-
ties of the lattice survive even at the smallest
spacings. For example, a rectilinear lattice has a

discrete fourfold symmetry that persists even at
the finest spacing. Also, in continuous space
and time it’s easy to prove that a simultaneous
collision of three billiard balls has a probability
of zero, but on a lattice such three-way colli-
sions are commonplace. As a result the statistics
of collisions will be different in the lattice world.

Making Do
The conceptual thickets surrounding simulation
algorithms have not stopped anyone from using
those algorithms—nor should they. All four of the
basic approaches described here are in daily ser-
vice, and they work. Limitations and caveats have
to be respected—but then again you are well
advised to read the instructions and always wear
eye protection when operating any power tool.

If simulation techniques give the right
answers, why worry about whether or not they
are made from all-natural ingredients? Why
should we confine ourselves to the same limited
stock of algorithms that nature draws on?
Sometimes the simulator is surely licensed to
innovate. If you are building a video game, any
shortcut or algorithmic trickery that yields the
desired illusion ought to be acceptable practice.
If the motions of the objects on the screen look
right, then they are right. There is no higher
standard of judgment.

But in other contexts a little caution would be
prudent. Simulation is now celebrated as a
“third way” of doing science, an adjunct to the-
ory and experiment. Accordingly, some simula-
tions mimic processes where no one knows the
right answer, and the simulation is supposed to
reveal it. The imitation of nature is the only war-
rant of truth such a simulation can offer.
Without it, we may well be watching ghostly
billiard balls wander off the table, and never
know there’s anything wrong.

Bibliography
Greenspan, Donald. 1982. Deterministic computer physics.

International Journal of Theoretical Physics 21:505–523.
Hoffmann, Christoph M. 1989. The problems of accuracy

and robustness in geometric computation. IEEE
Computer, 23 (March):31–41.

Hubbard, Philip M. 1995. Collision detection for interac-
tive graphics applications. IEEE Transactions on
Visualization and Computer Graphics 1:218–230.

Lubachevsky, Boris D. 1991. How to simulate billiards
and similar systems. Journal of Computational Physics
94:255–283.

Margolus, Norman. 1984. Physics-like Models of
Computation. Physica D 10:81–95.

Minsky, Marvin. 1982. Cellular vacuum. International
Journal of Theoretical Physics 21:537–551.

Reif, John H., and Stephen R. Tate. 1993. The complexity
of N-body simulation. Proceedings of the 20th
International Conference on Automata, Languages and
Programming, July 1993.

Toffoli, Tommaso. 1982. Physics and computation.
International Journal of Theoretical Physics 21:165–175.

Uchiki, Tetsuya, Toshiaka Ohashi and Mario Tokoro. 1983.
Collision detection in motion simulation. Computers and
Graphics 7:285–293.

1996 July–August 335

