
Computing Science

A Question of Numbers

Brian Hayes
n my daydream, Neil Sloane and Simon
Plouffe are contestants on "Jeopardy," the TV
game show. Sloane picks the category "Inte-

0.»r Sequences" for $400, and Alex Trebek reads
the answer: "1, 1, 2, 3, 5, 8,13, 21...." Sloane in
stantly supplies the question: "What are the Fi
bonacci numbers?" Later it is Plouffe's turn, and
he selects "Real Numbers" for $1,000. Trebek
reads out an answer: "1.618033989," and Plouffe
responds with the question: "What is (J), or the
golden mean—the limiting value of the ratio of
successive Fibonacci numbers?"

In real life Sloane and Plouffe are not competi
tors but collaborators. Sloane is a mathematician
at AT&T Bell Laboratories, well known for his
work in graph theory, combinatorics and geome
try. He is also the author of the Handbook of Integer
Sequences, a compendium of some 2,300 se
quences, published in 1973. Plouffe, a mathe
matician now at Simon Fraser University in
British Columbia, is another collector of numbers
and sequences, who volunteered a few years ago
to help revise and expand the Handbook. Sloane
and Plouffe are coauthors of the new edition,
published last year as the Encyclopedia of Integer
Sequences. It is a much-enlarged and enriched
work, with more than 5,400 entries.

Sloane's sequence database is also accessible by
electronic mail. If you send a message to the In
ternet address sequences@research.att.com with
the text "lookup 1 1 2 5 14 42 132 429," you will
receive a reply (typically a few minutes later)
identifying the sequence as the Catalan numbers,
which turn up in a surprising variety of combina
torial contexts (see Figure 1). The information re
turned by the e-mail service typically includes the
initial terms of the sequence, a formula or gener
ating function, a terse description, and references
to the literature. Sloane has also set up a higher-
power sequence server, which I'll discuss below.

Following his work on the Encyclopedia of Inte
ger Sequences, Plouffe has gone on to develop an
analogous Internet server for real numbers,
called the Inverse Symbolic Calculator, or ISC.
The calculator is "inverse" in the sense that you
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give it a number and ask where the number
might have come from, rather than giving it a
formula and requesting a solution. You do not
ask the calculator for the value of e/n + 1; you
supply the numerical result 1.8652559794322, and
the program suggests this expression as one pos
sible source. The ISC operates over the World
Wide Web; instructions for reaching it are given
at the end of this article.

The Sequence of Sequences
Network access to these resources adds a great
deal of utility and convenience, but I must pause
to mention some special charms of the old-fash
ioned, paper-and-ink version of the Encyclopaedia
of Integer Sequences. There is no mathematical
table I have read with greater pleasure. Where
the on-line service facilitates reference, the print
ed book encourages browsing. As you leaf
through the pages, you come upon sequences
you would not have thought to look up. For ex
ample, there is the sequence designated M2675,
which begins 1, 3, 7,19, 53,149, 419...; each ele
ment a(n) is the number of stable towers that can
be built from n Lego blocks. M1041, beginning 1,
2,4, 7,11,16,22..., is described as the maximum
number of pieces you can get from a pancake by
slicing it with ;; cuts. Sequence M0255, whose
first few terms are 0,1, 2, 2, 3, 3,4, 3,4,4, 5, 4...,
turns out to be the minimum number of multi
plications needed to compute an ;/th power.

Browsing also offers glimpses into some of the
far-flung areas of mathematics and science that
are prolific generators of integer sequences.
Number theory and combinatorics are naturally
well represented, but there are also lots of exam
ples from switching theory and circuit design
(combinations of Boolean functions), chemistry
(numbers of alkanes, ethers, esters, etc., with «
carbon atoms) and a few from physics (Feynman
diagrams with /; vertices) and biology (secondary
structures of RNA with n nucleotides).

Sloane is particularly fond of self-generating
and self-referential sequences. In M0257, for in
stance, a(n) gives the number of times that n ap
pears in the sequence. The initial terms are 1,2,2,
3, 3, 4, 4, 4, 5, 5, 5.... Even cuter is Sloane's per
sonal favorite, M4780, which begins 1, 11, 21,
1211,111221.... I will allow my readers to puzzle



this one out for themselves, with the clue that
each term describes the preceding term.

There are some outright jokes, such as M4961:
1,15,29,12,26,12,26,9,23,7,21.... The descrip
tion given is "Dates at fortnightly intervals from
Jan. 1." Finite sequences are supposed to be ex
cluded, but a few have sneaked in. Sequence
M3296 begins 1,4,7,9,11,12,14,16... and is giv
en in its entirety in the Encyclopedia. Hint: It ends
at 92 in nature but goes on to at least 106 in the
laboratory. Banned from the printed volume but
recently added to the on-line database are some
other well-known "dumb" sequences, such as
lists of stops on various subway lines.

Another benefit of browsing the printed page is
that it sets one to musing about the sequence of se
quences. The arrangement of the Encyclopedia at
first seems fairly peculiar. The sequences are in a
lexicographic order that ignores any leading terms
less than 2; thus 1,2,3,4... precedes 0,1,2,4,8...
but follows 2, 2, 4, 4, 6.... The reason for this
arrangement is that the starting point of many se
quences is uncertain or ambiguous. (Do the Fi
bonacci numbers begin 0,1,1, 2... or 1,1, 2... or
1,2...?) But solving one problem introduces other
oddities. What becomes of sequences that consist
entirely of 0s and Is? A few of these have simply
been placed ahead of the "official" table, whose
first entry is the sequence 2,0,0,0.... Others have
been transformed into sequences of Is and 2s.

No negative integers appear in the table.
Hence there can be no infinite monotonically de
creasing sequence. I was mildly surprised that I
had to thumb through more than 200 sequences
before coming to the first strictly nondecreasing
example. This is sequence M0208, and from the
rule for sorting the sequences you may be able to
guess its identity: the all-2s sequence, 2,2,2,2....
In the printed Encyclopedia the very next se
quence, M0209—the slowest-growing increasing
sequence—is the rather interesting entry 1,1,1, 1,
1,1,1,1,2,2,2, 2,2,2, 2, 2, 3,3, 3,3,3,3,3,3,4,4,
4, 5.... It counts the ways of partitioning a num
ber into cubes. When I mentioned this juxtaposi
tion to Sloane, he pointed out that his file of new
sequences—those added to the collection since
the Encyclopedia was published—includes a few
items that grow faster than M0208 but more
slowly than M0209. One example is the sequence
in which a{n) is the integer nearest to log10(/;); it
includes 285 2s followed by 2,846 3s.

A Walk in Manhattan
The primary use envisioned for both the printed
Enci/clopedia and the Internet sequence server is
reference. In the course of your work you en
counter a series of integers, and you want to know
whether anyone has seen them before and studied
their properties. 1 have had occasion to consult the
server in just this way—although the sequences
have come more from play than from work.

When I was a commuter in New York, I walked
a diagonal route across midtown Manhattan

morning and evening. I used to wonder how
many different paths I could find through the grid
of east-west and north-south streets without tak
ing extra steps. Eventually I grew curious enough
to calculate some solutions. For a square lattice of
n x n blocks, any minimum-length diagonal path
is necessarily 2;/ blocks long. How many such
paths are there? For the lxl lattice the answer is
2: You can go east and then north or you can go
north and then east. In a two-block square there
are six paths, and in a 3 x 3 block there are 20. The
sequence of values I calculated begins like this: 2,
6,20, 70,252,924,3432,12870,48620....

Do those numbers look familiar? They should.
They are prominent members of one of the most
ancient and famous families of numerical se
quences. And yet I did not identify them until
several years later, when I had a chance to submit
them to Sloane's sequence server. The answer
came back immediately: They were recognized
as sequence M1645, the central binomial coeffi
cients, the numbers that run down the middle of
Pascal's triangle. My reaction was "Of course!
Why didn't I see it all along?" But I doubt that I
would have made the connection without help.

The discovery was a productive one, which
led not just to an answer but to an insight. I saw

Figure 1. Catalan numbers count the triangles in a polygon.
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4,5,6,7,8,9,10, 11,12,13,14,15... natural numbers
7,11,13,17,19, 23, 29, 31, 37, 41... prime numbers
3,5,8,13,21, 34, 55, 89,144... Fibonacci numbers
8,10,12,14,16,18, 20, 22, 24, 26... even numbers
5.14, 42,132, 429,1430, 4862... Catalan numbers
5.15, 52, 203, 877,4140, 21147... Bell numbers
6, 24, 120, 720, 5040, 40320, 362880... n\, factorials
7, 9,11,13,15,17,19, 21, 23, 25, 27... odd numbers

9,10,12,14,15,16,18, 20, 21... composite numbers
16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196... squares

•6, 28, 496, 8128, 33550336, 8589869056... perfect numbers
•1,8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331... cubes

— 561,1105, 1729, 2465. 2821, 6601, 8911... Carmichael numbers

Figure 2. Some landmarks among the integer sequences.
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that counting the shortest diagonal paths for all
rectangular lattices—not just the square ones—
would fill in the rest of Pascal's triangle. Each
row of the triangle consists of all the lattices with
a given minimum diagonal path length. For ex
ample, the fifth row includes all the lattices with
a path length of 4, namely the 0 x 4,1 x 3, 2 x 2,
3x1 and 4x0 lattices. The corresponding counts
of diagonal paths (and the corresponding entries
in Pascal's triangle) are 1,4,6,4 and 1.

This success inspired me to compute a few
more paths in the Manhattan metric. Suppose
you are not in a great hurry on your crosstown
stroll, and you do not insist on taking a shortest
route but will accept any path that does not in
tersect itself—a "self-avoiding walk." With these
relaxed constraints, how many choices do you
have? A simple recursive program quickly found
the first few terms of the series: 1,2,12,184,8512.

H H 3 :mmmmm
Figure 3. Shortest diagonal paths in Manhattan.

Figure 4. A Pascal's triangle of lattice paths.unnvsE
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Figure 5. The 12 self-avoiding walks in a 2 x 2 lattice.

That was enough to get a match from the server,
which referred me to a diverting paper by
Christoph Diirr of the Laboratoire de Recherche
en Informatique at Orsay, near Paris. The data
base also gave me the next three terms of the se
quence: 1262816, 575780564 and 789360053252.
Who would have thought there would be so
many billions of ways to get from Grand Central
Terminal to Penn Station?

A Game of Tag
Not all visits to the oracle yield such satisfying re
sults. Another sequence I have submitted to the
server comes from a problem first studied in the
1920s by Emil L. Post. The problem works like
this. Take any string of 0s and Is at least three
digits long, and examine the first digit. If it is a 0,
delete the first three digits and append 00 to the
end of the string; otherwise, delete the first three
digits and append 1101. Now examine the new
first digit and repeat the procedure, continuing in
this way as long as possible. Post called the
evolving binary string a "tag system" because
the head and the tail of the digit string seem to
chase each other, as in the children's game.

A tag system can have three possible fates: The
binary string can dwindle away to nothing, it can
grow without limit, or it can enter an endlessly
repeating cycle. One might suppose there would
be another possible outcome, namely that the
system could wander forever without becoming
periodic but also without growing beyond some
arbitrary length limit, say m digits. But there are
only a finite number of binary strings with no
more than m digits (How many? See sequence
Ml599) so that eventually a string must be re
peated. On its second appearance, the repeated
string will produce the same successor it did the
first time around, and this successor will also
give rise to the same descendant, and the evolu
tion of the entire system will thereafter be stuck
in a deterministic loop.

Post was interested in tag systems as a kind of
warm-up for the grand challenge of mathemati
cal logic, as that challenge was perceived in the
early years of the 20th century. It still seemed
possible then to devise a master algorithm for
mathematics—a procedure that would mecha
nistically decide whether any proposed theorem
is true or false. As a preliminary exercise Post
aimed to find a decision procedure for tag sys
tems—a procedure that would tell whether or
not any given starting string would eventually
terminate. Then, perhaps, the same methods
could be extended to the more elaborate formal
systems that encode theorems of mathematics.
What happened instead is that Post found even
his simple game of tag intractable, and he made
use of this surprising difficulty to show that the
larger ambition of creating a decision algorithm
for mathematics cannot succeed. This was more
than 10 years before the work of Kurt Godel,
Alonzo Church and Alan Turing established the
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definitive limits of certainty in mathematics. But
Post, who was a young postdoctoral fellow at the
time of his work on tag systems, did not attempt
to publish his conclusions until much later.

As for the tag systems themselves, much re
mains unknown about them. No one has found a
starting string that does not eventually either
dwindle away or loop, but no one has proved
that such strings do not exist. Most of the known
systems enter cycles with a short period. For ex
ample, a decade ago I scanned through about
10,000 tag systems and found periods of 2,4,6,8,
10, 12, 16, 28, 40 and 52. The presence of only
even numbers in this series is easy to explain
(think about what happens to the length of the
string on each 00 and 1101 step), but I could see
no reason for the process to favor these particular
even numbers and to exclude others.

When I submitted the sequence of known pe
riods to sequences@research.att.com, the reply
was a disappointing "no match." But Sloane also
runs a more sophisticated query service at the
e-mail address superseeker@research.att.com.
The superseeker programs work hard to discover
some underlying regularity in a sequence or to
transform it into a known sequence. For example,
they try adding small constants to each term and
multiplying the terms by small factors; they look
at sums and differences of adjacent terms; they
look at sequences formed by selecting every sec
ond term, and they check the complementary se
quence (the sequence of numbers not in the sub
mitted sequence). Another powerful method of
analysis is to form a generating function, an infi
nite power series in which the terms of the se
quence appear as coefficients. The generating-
function programs for superseeker were created
by Plouffe, Francois Bergeron of the Universite
du Quebec a Montreal and Bruno Salvy and Paul
Zimmermann of the Institut National de Re
cherche en Informatique et Automatique in
France. Another dozen sequence-analyzing pro
grams, and the 1,200 lines of Unix shell scripts
that control the system, were written by Sloane.

I sent the tag-system periods to superseeker.
This time the answer did not come back instanta
neously. If the computer was not in fact thinking
deeply about the problem, it nevertheless paused
long enough to give that impression. When the
reply finally did show up in my mailbox, super
seeker had a suggestion to offer. Examination of
the differences between terms had revealed a
pattern: The last four terms are separated by
three equal intervals of 12, which suggests a very
simple rule for continuing the sequence. As
superseeker put it: "Apparently the differences
of order 1 in the difference table of depth 1 have
become constant. If this is true then the next four
terms of the sequence are: 64, 76,88, 100."

The prediction seemed unlikely, but it was
provocation enough to send me back to the com
puter to try generating more terms. Some 650,000
tag systems and 50 trillion cpu cycles later, I had
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Figure 6. Evolution of a periodic Post tag system.
a handful of new numbers. None of the four pre
dicted terms had appeared. Here is the complete
set of periods I have been able to collect so far: 2,
4, 6, 8,10,12,14,16,18, 20, 22, 24, 26, 28, 32, 34,
36, 40, 46, 52, 56, 282. What is the meaning of
these numbers? One possibility is that the se
quence^—if we could see all of its terms—might
turn out to be M0985, the even numbers. Another
boring possibility is that the set of tag-system pe
riods is not a sequence at all but just a finite and
arbitrary collection of numbers. But there re
mains a chance that the sequence is infinite and
yet includes only a subset of the even integers, a
subset selected by some rule that remains ob
scure but might be interesting.

Superseeker's opinion on the question is sen
sible but not very illuminating. Given the aug
mented sequence, it suggests three generating
functions, but what they generate is simply the
even numbers. In other words, superseeker pre
dicts that all the missing terms will eventually
show up. Perhaps that's the best bet.

Benumbed by Numbers
What stumps a program like superseeker is not
the question too hard to answer but the answer
with too many questions. This is the nature of in
verse problems. If you are asked to evaluate the
expression "2 + 2," the answer is uniquely deter
mined (given certain commonplace assumptions
about the meaning of the symbols). On the other
hand, if you are given the answer "4" and asked
what question it comes from, there is no end of
valid but useless responses. Likewise every se
quence has an infinity of possible continuations,
although some are more plausible than others.
(What is the next element of this sequence: 0,1,2,
3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39? The answer is 42. They are
the numbers of sequence M0473, values of n for
which n2 + n + 41 is prime.)
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The problem of sifting truth from coincidence
gets even worse in the realm of real numbers. The
database of constants for the Inverse Symbolic
Calculator has almost 9 million entries, and
Plouffe foresees expanding it to a billion. It fol
lows that the calculator could assign some mean
ing to almost any number with fewer than eight or
nine digits. Learning that your telephone number
is the solution to a fifth-degree polynomial may be
amusing, but it's unlikely to prove very useful.

The only cure for numerical coincidence is to
specify the numbers with greater precision. In
the ISC's tables, numbers are stored with 16 dig
its of precision. Thus even in a table with a billion
entries, the probability of finding an exact match
by making random probes is only about 10-7.

Like the Bell Labs sequence servers, the ISC can
apply varying degrees of sophistication when it
searches for the identity of a number. Level 1 does
a simple table lookup. If you enter 0.91596559417,
it will recognize Catalan's constant (named for the
same Eugene Catalan who is the eponym of se
quence M1459). Level 2, which is not yet imple
mented, will employ algorithms based on contin
ued fractions and similar concepts to try to find a
match. Level 3, which is available in a beta-test
version, uses another suite of algorithms to look
for linear relations among known constants. For
example, I entered the value 0.453985269150295 at
Level 3 and was informed that these are the first
15 digits of a number equal to

57i2-12(ln2)2
96

(I didn't just stumble on this number by accident.
See Bailey, Borwein and Plouffe 1995.)

There is no printed version of the Inverse Sym
bolic Calculator, but there is a printed precedent.
In 1990 Jonathan Borwein and Peter Borwein,
who were then at Dalhousie University in Nova
Scotia, published A Dictionary of Real Numbers.
This is not a book to keep by your bedside, al
though its columns and columns of eight-digit
numbers can make it a valuable reference. ("Wait
for the movie," is the usual advice, but in this
case it's "Wait for the Web site.") Plouffe's com
pilation of real numbers began independently of
the Dictionary, but Plouffe and the Borweins have
since made common cause. Jonathan and Peter
Borwein now direct the Center for Experimental
and Constructive Mathematics at Simon Fraser
University, where Plouffe has become a research
associate.

Using the Internet Servers
Compiling tables of mathematical functions was
one of the first uses of automatic computing ma
chinery. No one imagined in the early years that
instead of constructing a table of logarithms, the
computer would ultimately abolish the need for it.
And yet the computer also allows us to build big
ger and better tables. What seems to me particu

larly noteworthy is that networks of computers
now make those tables freely available—through
the generosity of the authors—to an entire world
wide community.

Sloane's sequence servers are accessible to
anyone equipped to send mail to an Internet ad
dress. For the basic sequence server, which mere
ly looks the sequence up in the database, the ad
dress is sequences@research.att.com. The body
of the message should include at least one line of
the following form

lookup 2 4 6 810121416 18 20 22
Note that the terms of the sequence are separated
by spaces rather than commas. As many as five
lookup requests can be included in a single mes
sage. A message without lookup requests elicits a
help file.

Requests to the superseeker have the same for
mat, but a message must have only one lookup
line, and furthermore only one request per hour
is allowed. (Running the superseeker programs
puts a significant load on Sloane's computer.)
The address is superseeker@research.att.com.

Both addresses can be reached through Sloane's
home page on the World Wide Web, <ftp://
netlib.att.com/netlib/att/math/sloane/doc/
eistop.html>. This site also provides copies of
files listing corrections and recent additions to
the database.

The URL for the Inverse Symbolic Calculator is
<http://www.cecm.sfu.ca/projects/ISC.html>.
Instructions for using the three versions of the
program are given there.

A related web site, with extensive expository
articles on mathematical constants, is run by
Steven Finch of Mathsoft, Inc. The URL is
<http:/ /www.mathsoft .com/asolve/con-
stants/constants.html>.
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pressed definition of eutrophication is
consistent with the one presented in
Chapter 24 of the second edition of Robert
Wetzel's Limnology (Saunders, 1983).

Douglas W. Larson
Portland, OR

Periods of Strings
To the Editors:

1 read with interest "A Question of
Numbers" (Computing Science, Janu
ary-February) by Brian Hayes. The col
umn discussed, among other things,
what periods a certain tag system can
have. I believe I can show that any even
period is realizable.

The tag system can be described as
follows. It maps finite binary strings to
finite binary strings. If the first digit is 0,
we add 00 to the end of the string and
delete the first three digits. Alternative
ly, if the first digit is 1, we add 1101 to
the end of the string and again delete
the first three digits.

I now show how to form strings with
any desired even period under the above
mapping. Let A = 001101. Let B =
110111010000. It is easy to see that A has
period 2; that is, after two iterations of the
mapping, the original string is regenerat
ed. Similarly, B has period 4. Further
more, A has length 6 and B has length 12.

This means A*X will map to X*A after
2 steps and that B*X will map to X*B af
ter 4 steps. (Here * denotes concatenation
of strings, and X is any string). It follows
easily that A"*B (the string consisting of n
copies of A followed by one copy of B)
will return to itself after 2n + 4 steps.
There remains the possibility that the ac
tual period might be a divisor of 2;/ + 4
rather than 2k + 4 itself, but this possibil
ity is excluded by observing that no in
termediate string can end 10000. Hence
we can obtain all even periods greater
than 2 with a suitable choice of n.

James B. Shearer
IBM Research
York town Heights, New York

How to Write to American Scientist-
Brief letters commenting on articles
that have appeared in the magazine
are welcomed. The editors reserve the
right to edit submissions. Please in
clude a fax number or e-mail address
if possible, and address your corre
spondence to Letters to the Editors,
American Scientist, P.O. Box 13975, Re
search Triangle Park, NC 27709-3975.
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That's Real Easy
A statistics package that's easy to use?

You've heard it all before, right? Then
you saw the five volume library you

needed to memorize before you could get
any work done. While other packages make
lofty claims about ease of use, StatView
actually delivers. Since 1985, StatView has
been the leading statistics
package on the Macintosh.
The goal of StatView is and
always has been to provide
researchers with a software
tool that makes data analysis effortless. £
Unlike our competitors, StatView began as
a graphics-based application. Its not a com
mand line, mainframe-behemoth ported to
Windows. StatView's celebrated point and
click interface lets you create and edit your
analyses on the fly. Add new variables,

. StatView
I n m « ■ ■■

N O S W E A T S T A T I S T I C S

change your data, edit analyses, enhance
graphs and tables all by pointing and click
ing. No commands to memorize. Save your
work at any time, re-open it and pick up
right where you left off. And never lose the
links to your data. Try that with any other
statistics package! £ But don't just take

our word for it. StatView has
received more awards from
the Macintosh press than
any other statistics package
available — a six-time Mac

world World Class award winner, 1996 World
Class finalist, MacUser Editor's Choice award
winner and 1995 Editor's Choice finalist.
Think its all tod gddd to be true? Find out
what you've been missing.
CALL I-8DD-BBG-STAT FDR MDRE
INFORMATION AND A FREE DEMO DISK!!

S . J Mn ABACN/I
1918 Bonita Avenue, Berkeley, CA 94704-1014 Phone: 510-540-1949, Fax: 510-540-0260

Email: info@abacus.com Visit Our Website: http://www.abacus.com

StatView is a 32-bit Windows 95 ready application. StatView also runs with Windows 3.1,
Windows NT and is available for Macintosh and Power Macs.

e. academic and quantity discounts.We have localized, international and student veisio
Call to:

ot StatView and licen
le information.
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