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Pleasures of Plication

Brian Hayes

mong all the forms of sculpture, the
most interesting from a mathematical
point of view may well be paper fold

ing. In support of this assertion I would point
out that paper folding requires a distinctive leap
of the imagination from Flatland into Round-
world, from two dimensions to three. A sculptor
who carves stone or models clay begins with a
medium that is already three-dimensional, but
the paper folder must envision the solid object
in the flat and formless sheet. This calls for
strong geometric intuition.

A computer program now under development
offers assistance in making the leap into a higher
dimension. Given a three-dimensional object, the
software attempts to generate a "folding net," a
two-dimensional diagram that you can color or
otherwise decorate, then print on paper, cut out
and fold up to create a three-dimensional model.
The program, called HyperGami, is the creation of
Michael Eisenberg of the University of Colorado at
Boulder and Arm Nishioka, a doctoral student at
Colorado. So far it is being used mainly to explore
paper models of polyhedra, which are objects that
hold much mathematical interest of their own.

In addition to serving as a bridge between di
mensions, HyperGami spans two worlds in an
other way as well. Part of its user interface relies
on the direct manipulation of objects—the point-
and-click paradigm common in most graphics
software today. But there is also a programming-
language interface, which allows operations on
the solids and on their folding nets to be ex
pressed algorithmically. Exploring ways of com
bining these two styles of computing was one of
the original motivations for the project.

Solids and Nets
The best-known form of paper folding is the art
of origami, long practiced in Japan, China and
Korea, and with many enthusiasts elsewhere as
well. In the traditional form of origami, objects
must be folded from a single square sheet of pa
per. Furthermore, folding is the only operation
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allowed; there is no marking, measuring, cutting
or gluing. In classical origami you should be able
to unfold the finished object and recover the orig
inal sheet of paper.

The name HyperGami pays tribute to the art
of origami, but the program in its present form is
best suited to somewhat less rigorous folding
challenges, which admit tools forbidden to the
origami purist—namely scissors and paste. The
folding nets produced by the program are
arrangements of connected polygons that have
to be cut out of the sheet and then glued along
corresponding edges to form a three-dimension
al model. Although these operations lie outside
the customs of origami, they draw on another
old tradition. The idea of a folding net goes back
at least as far as Albrecht Diirer, the German Ren
aissance engraver, who incorporated polyhedra
into a number of his works. And of course some
of the polyhedra are themselves important em
blems of classical Greek mathematics.

When the HyperGami software is started up, it
displays three main windows and several auxil
iary palettes. One of the windows shows an or
thographic projection of whatever three-dimen
sional object is currently under construction, and
a second window displays the corresponding
flattened folding net. The third window gives ac
cess to the programming environment, where
procedures that act on the graphic objects are en
tered and executed. The palettes provide a vari
ety of tools and controls for building and deco
rating polyhedra. For example, one palette
consists of buttons that generate various simple
polyhedra as the starting point for a construction
project. Another palette specifies colors and pen
widths for use in decorating the objects.

You can do quite a lot with the HyperGami
system just by issuing direct commands from the
palettes and from menus, without doing any pro
gramming. Clicking on a button instantly creates
both a three-dimensional view and a folding net
for any of several simple polyhedra, including
the five Platonic solids (the regular tetrahedron,
cube, octahedron, dodecahedron and icosahe-
dron). With other buttons the three-dimensional
view can be rotated about x, y and z axes. With a
click of the mouse the individual polygons that
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make up the surface of the polyhedron can be
filled with a selected color or pattern. Any such
decoration applied to the folding net can then be
transferred to the three-dimensional view. A pen
tool can be made to draw simultaneously on
both the net and the solid, which helps a great
deal in figuring out which polygons in the net
correspond to which faces of the solid.

Other interactive commands alter the geome
try of both the net and the solid. By applying a
linear mapping, you can stretch or compress a
polyhedron along any axis. For example, a regu
lar icosahedron (which could be inscribed inside
a sphere) can be deformed into a prolate and
highly nonregular icosahedron (which could be
inscribed inside an ellipsoid). The program at
tempts to draw a folding net for the distorted sol
id, so that you can build a paper model.

Another built-in operation is vertex truncation:
lopping off all the vertices and thereby replacing
them with faces. Truncating the 30 vertices of an
icosahedron yields a new object with 60 vertices,
12 pentagonal faces and 20 hexagonal faces, all
arranged with the symmetry of a soccer ball. This
truncated icosahedron is also the structure of
buckminsterfullerene, the C^ carbon molecule.
After truncating a polyhedron, HyperGami again
tries to generate a folding net.

I say that the program tries to generate a fold
ing net because the success of the attempt is not
guaranteed. If you take a folded paper polyhe
dron and cut along selected edges, you will even

tually reach a state in which no two polygons are
joined along more than one edge. At this point
the paper can be made to lie flat, but the result is
not necessarily a valid folding net, because some
of the polygons may overlap. For some noncon-
vex polyhedra no single-sheet folding net exists.
(A polyhedron is nonconvex if it has indenta
tions—or more formally if you can find two
points on its surface connected by a straight line
that passes outside the surface.) Does every con
vex polyhedron have a nonoverlapping net? The
question is apparently an open problem in com
putational geometry (Croft et al. 1991, p. 73).
Even when a net is known to exist, however,
finding it can be a combinatorial headache. The
number of candidate nets grows exponentially
with the number of faces in the polyhedron.

HyperGami's net-generating algorithm begins
by choosing a single face as the starting point for
the net, then adds adjacent faces one by one to
exposed edges. Heuristic rules built into the pro
gram favor nets that are considered easier to fold;
the user can adjust the rules when necessary. Al
though the algorithm is not guaranteed to work
in all cases, Eisenberg and Nishioka report that it
has not yet failed to find a net for any convex sol
id, and it also works for many nonconvex ones.

To actually build the polyhedra, you need a
printer, and preferably a color printer. Color ink-jet
printers, which have recently become quite inex
pensive, work well for this purpose. Eisenberg
and Nishioka remark mat HyperGami "represents

Figure 1. The HyperGami system at work. The polyhedron under construction is a four-colored dodecahedron.
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Figure 2. A great stellated dodecahedron. (Photographs
by Jim Sink.)

an attempt to expand the role of the color print
er—rather than being merely an output device,
the printer now becomes something a little closer
to a 'mathematical toy shop.'" For Eisenberg the
emphasis on making tangible artifacts reflects his
disappointment that earlier software projects have
proved so ephemeral. As an author of programs
for the Tandy Color Computer, he has seen his
work become inaccessible in a span of just a few
years. The software itself is still perfectly service
able, but no one has a machine to run it. If Hyper
Gami eventually succumbs to the same fate, he
will at least have an office full of brightly colored
souvenirs. (All of the polyhedra shown in the pho
tographs that accompany this article were deco
rated and folded by Eisenberg and Nishioka.)

Programs and Polyhedra
Given a chance to play with polyhedra by merely
mousing around—doing geometry with a flick of
the wrist—why would anyone choose to brave the
rigors of a programming language? Eisenberg is a
strong advocate of the notion that most computer
software ought to offer both means of interaction.
Menus and buttons and direct manipulation bring
a delightful immediacy to computing, but they
also have limitations. No matter how many
palettes of buttons and how many menu options
are offered, users of a program will always want
to do something the author has not foreseen.
Adding still more buttons and menus is not the
answer. What is needed instead is a mechanism
that allows the user to expand and modify the
software at will. "What is missing," Eisenberg
writes, "is a medium of expression in which con
cepts can be built, named, saved, re-used, extend
ed, combined. What is missing is language."

Here is a simple instance where language
proves its worth:

The most important development in the study
of polyhedra since antiquity was Leonhard Euler's

1750 discovery of an invariant relation between
the number of faces, edges and vertices in a poly
hedron. The relation is expressed in the equation:

faces - edges + vertices = 2.
Adrien-Marie Legendre and others later proved
that the equation holds true for any polyhedron
that is topologically equivalent to a sphere. Ex
ploring this relation by manually counting the
faces, edges and vertices of a model is tedious and
error-prone. (Maybe that's why it remained unno
ticed for more than 2,000 years.) Doing the count
ing with a mouse on a computer screen is even
more awkward. On the other hand, a procedure to
do the arithmetic can be written in a line or two.

A command to calculate the Euler characteris
tic could have been built into the HyperGami
software and provided as a menu choice, but
there is no end of other functions one might then
demand. For example, having just computed
(faces - edges + vertices) for a three-dimensional
polyhedron, the urge is irresistible to apply the
same formula to the two-dimensional net. Again,
writing a procedure to solve the problem is triv
ial. (The result is not immediately obvious. There
is a one-to-one mapping between the faces of the
solid and the polygons of the net, but some edges
and vertices are duplicated when the polyhedron
is cut open. Is the Euler characteristic the same
for all nets? Is the constant in the equation still 2?
Some answers are given at the end of this article.)

Solving problems by writing programs—even
very simple programs—presupposes a willing
ness and an ability to write them. There is a lan
guage to be learned, which most people do not
pick up as quickly as they do point-and-click
methods. But the rewards are commensurate with
the effort required. Furthermore, part of Eisen-
berg's aim is to promote a "culture of program
ming," in which facility with computer languages
is considered a fundamental skill alongside the
reading and writing of human languages.

Figure 3. A regular icosahedron.
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The programming language underlying Hyper
Gami is Scheme, a dialect of Lisp. Scheme was de
veloped in the late 1970s, mainly at the Massachu
setts Institute of Technology; it is a small language,
often chosen for introductory computer-science
courses, but it is also a highly expressive one. Un
like the rudimentary "macro" or scripting lan
guages built into some programs, Scheme in
cludes all the facilities of a general-purpose
programming environment, such as constructs for
defining variables, procedures and composite data
structures. The entire HyperGami system is writ
ten in Scheme, and the full power of the Scheme
interpreter is available to the user. (The software
relies on features of a specific Scheme implemen
tation, called MacScheme, which runs only on the
Apple Macintosh computer, and thus HyperGami
too is confined to the Macintosh.)

The version of Scheme presented to the Hyper
Gami user is a superset of the standard language,
enriched with various amenities for manipulat
ing polyhedra. Data structures representing faces,
edges and vertices are pre-defined, and there are
numerous built-in procedures that operate on the
current solid or the current folding net.

One major element added to HyperGami's
Scheme is a "turtle graphics" system for decorat
ing folding nets. Turtle graphics is usually associ
ated with the Logo programming language
(which emerged from the same MIT community
as Scheme), but it can be implemented in any lan
guage. The original turtle was a hardware device
that crawled over a sheet of paper carrying a pen;
now a virtual turtle moves around the computer
screen under program control, drawing a line as it
goes. The advantage of drawing with a turtle
rather man drawing by hand is that turtle-graph
ics routines can be encapsulated in procedures,
which then become components of more elabo
rate procedures, and so on. In this way intricate
patterns are assembled from simple commands.

Suppose you want to call attention to some of
the symmetries of a polyhedron by drawing a line
from the center of each face to the midpoint of each
edge. Routines for finding the center of a face and
the midpoint of an edge are already present in the
HyperGami system, and so you can begin by writ
ing a procedure that places the turtle at the center
of a given polygon and draws a line to the mid
point of a specified edge. This procedure is then in
voked repeatedly by a higher-level procedure that
draws radial lines to all the edges of a single poly
gon. Finally, yet another procedure applies the ra
dial-line routine to all the polygons in a net. If you
design the procedures carefully, they will work
equally well for polygons with any number of
edges and for polyhedra with any number of faces.

Some of the most interesting HyperGami pro
grams (in my view) are those that explore the
connections between the two-dimensional net
and the three-dimensional solid. For instance,
consider a program for four-coloring a polyhe
dron—that is, coloring each face with one of four

colors in such a way that no two adjacent faces
are the same color. (Four colors are guaranteed to
be enough for any polyhedron topologically
equivalent to a sphere. Therefore you can check
that the coloring is possible by calculating Euler's
characteristic.) The aim is to paint the colors onto
the folding net, but it is not enough that the net
itself be properly four-colored. Faces that are dis
tant and unconnected in the net may turn out to
be adjacent in the polyhedron, so that they can
not be assigned the same color. The coloring pro
cedure must do its checking for conflicts in the
solid, then perform the actual coloring in the net.

Programs and Nonpolyhedra
Writing programs about polyhedra is valuable
not only for what it can accomplish but also for
what it can teach. When you start manipulating
polyhedra algorithmically, you are compelled to
think about their geometry in new ways.

Figure 4. A truncated tetrahedron.

Suppose you tried to describe a regular dodeca
hedron to a friend who had never seen one. You
might say something like, "It has 12 faces, all of
them regular pentagons, joined along their edges so
that three faces meet at every vertex." This verbal
sketch might suffice for a friend with exceptional
geometric intuition, but it is not nearly enough to
induce a computer to draw a picture of a dodeca
hedron and generate a folding net. The description
leaves too much undefined. (What's a face? What's
an edge? What's a vertex?) Furthermore, what it
describes is a kind of Platonic ideal of a dodecahe
dron, floating somewhere in space. Drawing a pic
ture requires choosing a specific dodecahedron,
with a definite size and position arid orientation.

The description of a dodecahedron that
works best for a computer is one you would be
unlikely to choose to communicate to a friend. It
begins with a listing of the coordinates of the
vertices. The list says, in effect: Define a point at
[x = 0, y = 0,2 = 0}, define another point at [x = 1,
y = 0,2 = 0}, define a third point at [x = 1.309,
y = 0.951, 2 = 0}, and so on for 20 points. Then a
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second list—an adjacency matrix—indicates
which of the vertices are connected by edges.
Finally a third list specifies which groups of ver
tices define planar faces.

This description of a dodecahedron is so
opaque and inaccessible that the polyhedron itself
seems to have fled the scene altogether, leaving
behind nothing but a trail of numbers. Where is
the geometry? What has become of the object's el
egant symmetries? The complaints have merit.
Few people can look at the coordinates of a poly
hedron and see its form, any more than they can
glance at the score of a symphony and hear its
harmonies. And yet the disembodied, numerical
description of a polyhedron also has much to rec
ommend it. As already noted, it makes easy work
of calculating quantities such as the Euler charac
teristic. More important, if staring at the adjacency
matrix leads you away from geometry, it draws
you into the equally beautiful (though more ab
stract) realms of graph theory and group theory.

Writing a program is also an excellent way to
find out whether you really know what you
think you know. While exploring the HyperGami
system, I tried the exercise of writing a simple
procedure to randomly "jiggle" the vertices of a
polyhedron, converting a regular solid into a
slightly irregular one. The procedure adds a
small displacement to the x, y and 2 coordinates
of each vertex and then redraws the solid and
the folding net. My first experiments began with
a tetrahedron and an octahedron, and the proce-

Figure 5. An icosidodecahedron.

dure seemed to work fine. But then I tested it on
a cube, and discovered that what I had created
was not a polyhedron at all. Although the folding
net was made up entirely of straight-sided
quadrilaterals, and although the edges of these
polygons could be locally fitted together at each
vertex, assembling the entire structure yielded a
solid with curved rather than planar faces.

I find it interesting to reflect on where I went
astray. Thinking of polyhedra in terms of Carte-

Figure 6. A variant of the great stellated dodecahedron.

sian coordinates gives primacy to the vertices. In
the numeric representation it is the vertices that
seem to anchor the solid; the edges and faces are
derivative features entirely determined by the
position of the vertices. Given this view, it is an
easy step (for a lazy mind) to suppose that a ver
tex can be moved at will, as long as the edges
and faces are made to follow along. The supposi
tion is true in two dimensions, which is why the
folding net still looks okay after the perturbation.
But three-dimensional geometry is more tightly
constrained. Vertices can be pushed around
freely only in polyhedra whose faces are all tri
angles. (And even in such "deltahedra" there are
a few pathological cases to watch out for.)

A correct program for jiggling vertices would
have to check all modified faces for planarity, and
triangulate them where necessary. On the other
hand, my erroneous program is not a total waste.
Some of the curved-surface solids it created are
intriguing objects in their own right and may
merit further investigation. (They induce won
derful illusions of depth perception.)

Much else in HyperGami also remains to be
explored. Here are a few projects I lacked the
time or the ability to pursue, which someone else
might consider taking on:

The "dual" of a polyhedron is created by re
placing every vertex with a face and every face
with a vertex. The dual of a cube is an octahe
dron, and the dual of a dodecahedron is an icosa
hedron. It should be straightforward to write a
HyperGami procedure that would handle these
elementary cases. A procedure to find duals of all
polyhedra would be much more difficult. For
some solids the dual is not uniquely defined.

Toroidal polyhedra might present an interesting
challenge to the net-generating algorithm. The
smallest known toroidal polyhedron (Gardner
1978), which has just seven faces, probably cannot
be decomposed into a one-piece folding net with
out overlaps, but larger examples should be more
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tractable. Toroidal polyhedra are also a useful
check on routines for calculating Euler's charac
teristic. And you earn extra credit if your proce
dure for four-coloring an ordinary polyhedron
produces a correct seven-coloring of a torus, or bet
ter still a four-coloring (Croft et al. 1991, p. 75).

A project with a more practical focus would be
to write a routine for adding gluing tabs to a fold
ing net. The tabs must be arranged so that wherev
er two edges join in the folded solid, there is exact
ly one tab. Peter Hilton and Jean Pedersen suggest
putting a tab on every other edge on the perimeter
of the folding net. This rule will never cause an er
ror (where a pair of joined edges have either no
tabs or two tabs), but the resulting arrangement is
not always optimal for folding. Furthermore, the
shapes of the tabs sometimes need careful trim
ming to avoid overlaps and obstructions.

Notes
HyperGami requires a Macintosh computer with at least 10
megabytes of memory. A color monitor and a color printer
are obviously helpful. The software is very much a work-in-
progress, not a finished product. Some functions are not vet
implemented; the documentation is incomplete; many bugs
have yet to be eliminated. Readers who would like to ex
periment with the software in spite of these caveats should
send an inquiry to Michael Eisenberg, Department of Com
puter Science and Institute of Cognitive Science, Campus
Box 430, University of Colorado, Boulder, Colorado 80309-
0430. Internet address: duck@sigi.cs.colorado.edu

Here is one possible analysis of the Euler characteristic
of a two-dimensional net: Think about cutting open a poly
hedron along the edges to create a net. The first slit, ex
tending between two vertices (but not including the ver
tices), increases the number of edges by 1 and leaves the
number of faces and vertices unchanged. Thereafter, ex
tending the slit through a vertex and up to (but not includ
ing) the next vertex always adds 1 to the count of both
edges and vertices. Hence the overall effect of n cuts is toadd n edges and /; - 1 vertices, so that the Euler character
istic for the net is: faces - edges + vertices = 1.
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