
A couple of years ago, I had one of those 
annoying moments of self-discovery. Sit-
ting at my computer, I clicked on an icon 

to launch a program. The software obediently 
uncoiled itself from the storage disk and loaded 
into memory—then silently folded up again and 
went away. I clicked on the icon again, and the 
program went through the same futile panto-
mime. I clicked a third time, and watched the 
performance once more. The moment of self-
discovery came just in time to save me from 
clicking yet again. What I discovered was that I 
must have a fairly peculiar mental model of how 
a computer works if I could believe that a fourth 
attempt might be any different from the first 
three. How long would I have gone on clicking? 
Did I think I might outlast the machine—prove 
that I’m more stubborn? If I kept clicking long 
enough, would I wear down its will to resist? 
Did I think of the computer as an animal that 
can be trained by repetition and discipline? Or 
perhaps I saw it as a dull child who will learn, 
eventually, if you keep drumming away at the 
same lesson?

Ever since that incident, I have been keeping 
a diary of computer bugs and my reactions to 
them. Whenever something goes wrong with 
one of my computers, I make a note of it: what 
happened, what I was doing when it happened, 
what I did about it. The bug logs now run to 25 
pages. One reason for keeping these records is 
to learn something about the nature of computer 
malfunctions, but what interests me more is the 
human response to the machine and to the little 
surprises it holds in store for us. In other words, 
the aim is not so much to debug the computer 
as to debug myself.

Sphexishness
If I had been starting a car instead of a computer 
program, making two or three attempts in a row 
would not seem so foolish. You don’t get out and 
call the tow truck when the engine fails to catch 
the first time you turn the key. And if it were a 
lawn mower I were trying to start, several pulls 
on the cord would be the norm; a mower that 

roared to life on the first try might be disconcert-
ing. Why should a computer be any different 
from these machines?

In point of fact, computers are rather different 
from lawn-mower engines. From a theoretical 
point of view, a digital computer is a determin-
istic machine, whose actions can be predicted 
in complete detail. Specifically, a computer can 
be considered a deterministic finite-state autom 
aton, or FSA. As the name suggests, a machine 
of this kind has only a finite number of possible 
states, or configurations, available to it. A snap-
action light switch is an extremely simple FSA, 
with just two stable states—off and on. A pair 
of switches controlling a single lamp make up a 
slightly more elaborate FSA, with four states. The 
number of states in a digital computer is vastly 
larger: Roughly speaking, a computer than can 
store m bits of information has 2m possible states. 
Values of m commonly exceed 100 million.

Ignoring some technicalities, a deterministic 
FSA works as follows. The machine starts out in 
some well-defined initial state; then, with each 
input received, it makes a transition to a new 
state, and possibly also produces some output. In 
the case of a computer, the initial state is the con-
dition established when the power is first turned 
on; the inputs are events such as pressing a key 
or clicking the mouse; the outputs could include 
displaying information on a screen or sending 
it to a printer. At every instant the state of the 
machine is defined by the configuration of all the 
bits in memory as well as the bits in the registers 
of the central processing unit, and perhaps a few 
other bits also. (The bits stored on a magnetic 
disk may or may not be part of the machine state, 
depending on whether the disk is considered 
part of the computer or an auxiliary device.)

A finite-state automaton is deterministic if 
its next state and its next output depend only 
on its current state and current input. Suppose 
in state q the machine receives input α, making 
a transition to state p and emitting output β. 
Then we know with absolute certainty that if 
the machine is ever again in state q, input α will 
evoke exactly the same response, so that we will 
again see state p and output β. There is no room 
for chance or variation. The sequence of events 
that brought the machine to state q does not 
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matter. Events in the world outside the machine 
do not matter. Only the current state and current 
input matter.

Within this deterministic vision of computer 
operations, my attempts to deal with a comput-
er as if it were a balky lawn mower look fairly 
ludicrous. I was in state q and making input α; 
but each time I tried, the machine went through 
a cycle of operations that immediately returned 
it to state q. Input α would then inevitably begin 
the cycle all over again. The program was no 
more going to be started by continuing to click 
on its icon than a burned-out light bulb will be 
lit by continuing to flip the wall switch.

Douglas Hofstadter of Indiana University 
coined the word sphexish to describe behavior 
like mine. Wasps of the genus Sphex go through 
a brief ritual before burying a paralyzed cricket 
as nourishment for their offspring. If you move 
the cricket during the ritual, the wasp has to start 
all over again. Keep moving the cricket, and the 
wasp will keep repeating the same sequence of 
actions. A naturalist once played this trick 40 
times in a row on a single wasp. As Hofstadter 
points out, the naturalist was being just as sphex-
ish as the wasp. A metanaturalist from another 
planet would have had a hard time telling which 
species was being manipulated and which was 
doing the manipulating. Likewise in my contest 
with the computer, we both had to cooperate to 
keep up the dance of sphexishness.

Microstates and Macrostates
How embarrassing to be caught exhibiting the 
mental habits of an insect! (I really do need 
debugging.) But on reading through my diaries, 
I am led to wonder whether my behavior was 
really so sphexish after all. There is a fair body 
of evidence that just trying again sometimes 
does work. It’s even possible that if I had gone 

ahead and clicked a fourth time, the program 
would have launched itself successfully.

At one point in my years of diary-keeping, 
I was having trouble with a communications 
program. I could start the software, but when I 
asked it to dial the telephone, the program died. 
This happened on three occasions, all within a 
month or so. In each case, I simply restarted the 
program—repeating exactly the same sequence 
of actions I had followed the first time—and 
it worked fine. I never discovered the cause of 
these sporadic failures.

Another time, the very program that pro-
voked this long introspective debugging ses-
sion—the program that put me in the sphexish 
loop described above—quit without warning. In 
this instance, however, when I clicked to restart 
it, all was well again. Another program failed 
to install correctly when I first loaded it onto a 
hard disk, but going through the same series of 
operations a second time cleared up the trouble. 
The diaries are full of other problems that just go 
away on their own or fix themselves overnight. 
Evidently, the balky-lawn-mower approach to 
computer operation is sometimes effective.

The bug diaries suggest that most of my prob-
lems are recurrent, but they are not reproducible 
on demand. For example, the complaint that 
turns up most frequently (nine instances) con-
cerns a glitch in my word-processing software. 
On occasion the program would dump a jumble 
of unprintable characters into a document, like 
a digital inkblot. The error occurred follow-
ing a specific sequence of actions, but running 
through those actions would not reliably pro-
duce the error; it showed up only about one 
time out of 50.

The most infuriating bugs in my collection 
marred the operation of a small utility program 
whose function was to provide a hierarchical 
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Figure 1. More than 200 bugs were recorded in two years. Darker bars tally only novel problems, ignoring recurrences.



display of menus and submenus. It was a handy 
tool—which now and then crashed the entire 
system. In particular, if I selected an item at 
some intermediate level in the nested structure 
of menus, the probability of a crash was about 
0.1. Thus the crashes were just rare enough to 
tempt me to live dangerously.

How can these haphazard failures and fluky, 
random cures be reconciled with the view of a 
computer as a totally deterministic machine? 
One answer is that a real, physical computer 
isn’t truly deterministic. The finite-state machine 
of computer science is an abstraction, or ideal-
ization—something like the dimensionless point 
of geometry or the frictionless gears of elemen-
tary physics. A real computer has to be built out 
of imperfect parts. Because of hardware failures 
or design errors, the machine could conceivably 
get stuck between two discrete states. Quantum 
fluctuations could cause the system to shift 
spontaneously from one state to another. Certain 
possible inputs—such as a cosmic ray passing 
through a memory chip, or a lightning strike 
on the power line, or an irate user’s sledge-
hammer attack—could leave the machine in an 
indeterminate state. Any of these phenomena 
could disqualify the computer from the status of 
finite-state automaton.

A few events of this kind do show up in my 
bug diaries. Three times, as I sat down at the 
computer in dry winter months, a spark zipped 
from my finger to the mouse, with interesting 
consequences. But it is extremely unlikely that 
outside disturbances or arbitrary changes of 
state can explain the hundreds of other incidents 
in the diaries. If the inkblot bug in my word pro-
cessor was caused by cosmic-ray strikes, how 
did the rays find just the right bit to clobber on 
nine occasions, and in three different comput-

ers? The problem with such explanations is 
that they explain too much; they can explain 
anything.

With very rare exceptions, computers do func-
tion as deterministic finite-state machines. If you 
put the machine in the same state and supply the 
same input, you will always get the same result. 
The catch is that putting the machine in the 
same state is no easy matter. A computer with 
2100,000,000 possible states will necessarily have 
a great many states that superficially look alike 
but differ in their internal details.

In trying to reproduce a given state, you might 
run the same set of programs and invoke the 
same commands on the same data. These vis-
ible aspects of the computer’s configuration can 
be termed its macrostate. For every macrostate 
there are a multitude of possible microstates, 
corresponding to the underlying bit patterns. 
Although the same programs are running in two 
macrostates, they may be loaded into different 
areas of memory, yielding very different micro-
states. Although the same commands are issued, 
they may be differently synchronized with the 
many unseen background processes that keep 
the computer going—processes for refreshing 
the display screen, blinking the cursor, reading 
the keyboard, and so on. Although a macrostate 
seems static, the microstate is changing with 
every cycle of the central processor chip, 10 or 50 
or even 100 million times per second.

If the computer were making random tran-
sitions through its 2100,000,000 microstates, the 
probability of its ever stumbling on the same 
state twice would be negligible. (At 100 million 
states per second it would take 1015,000,000 years 
on average.) Of course the transitions are not 
at all random, and their true pattern presum-
ably makes repetition somewhat more likely. 
On the other hand, included in the state of most 
computers is the state of a built-in clock and cal-
endar, which counts off the milliseconds over a 
period of some decades. The computer will not 
revisit a state until the calendar “rolls over.”

Because of the one-to-many mapping between 
macrostates and microstates, computers can 
remain rigidly deterministic in all their internal 
workings, but still seem wildly capricious to 
the poor sap at the keyboard. It’s a nasty com-
bination. It leaves me unsure whether the best 
approach to debugging is to correct the comput-
er’s logical errors or to heal its psychic wound.

The Phases of the Moon
A friend with experience of these matters once 
warned me: “Never let the computer know 
you’re in a hurry.” The hazard, of course, is that 
the machine will sense your impending dead-
line and choose the most inconvenient moment 
to crash. The more intelligent computers even 
seem to know that Federal Express closes earlier 
on Saturday than on weekdays.

It is easy to mock such notions, which seem 
to require us to believe in a mischievous spirit 
inhabiting the silicon, always on the lookout for 
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a chance to vex us. (Another friend advises me: 
“Don’t anthropomorphize computers. They hate 
it.”) But the idea of a computer reacting differ-
ently to a hurried user is not as implausible as it 
may seem. In the first place, urgency brings out 
a different spectrum of human bugs. I am capable 
of making mistakes either at leisure or in haste, 
but they tend to be different kinds of mistakes, 
and they probably expose different kinds of 
defects in the computer hardware and software.

Sometimes a speedy typist can create havoc 
even without making an error. One of the most 
devastating of all computer bugs was discov-
ered about 10 years ago in the control soft-
ware of a radiation-therapy machine called the 
Therac-25. The bug could lead to horrendous 
overdoses, and three patients died as a result. 
It turned out that one way of triggering the bug 
was to rapidly skip through a data-input screen, 
which allowed the radiation beam to be turned 
on before the computer had had time to adjust 
all the settings to their correct values. Typing the 
same sequence of keystrokes at a slower pace 
caused no trouble.

Bugs so erratic and mysterious that they seem 
to depend on the phase of the moon are an 
old programmers’ joke, but at least one such 
bug really did exist. (The story is told in Eric 
Raymond’s New Hacker’s Dictionary.) A program 
written by Guy L. Steele, Jr., who was then at 
MIT, rejected its own data files if they had been 
written during certain phases of the moon. The 
explanation was not in the least supernatu-
ral. The data files included a time stamp, and 
Steele had playfully added the lunar phase to 
the usual date and time information. At certain 
phases of the moon, the time stamp exceeded an 
80-character limit on line lengths, with the result 
that the file became unreadable.

Prolonged exposure to subtle and elusive 
bugs like these can lead people to approach the 
computer in an attitude of superstitious awe. 
They cling to whatever tricks or procedures 
worked the last time, without understanding 
the purpose of their own actions. They fear 
installing new versions of software, which might 
upset the delicate equilibrium of the entire sys-
tem. The more severely afflicted practice cleans-
ing rituals at the keyboard or offer sacrifices to 
propitiate the fickle gods of computation. I cer-
tainly don’t endorse such behavior, which I see 
as another variety of sphexism. And yet I can’t 
offer an alternative approach that can guarantee 
better results.

Every one of the malfunctions recorded in 
my diaries has a logical, rational explanation. 
I’m utterly certain of that. The fact remains, 
however, that I have been able to track down 
the logical, rational cause in only a handful of 
cases. Those few diagnostic successes concern 
problems in software I wrote myself or pro-
grams for which I had the direct assistance of 
the developer. Without access to the source code 
(the original program text), there is little hope of 
truly understanding a software fault. In that cir-

cumstance, superstition is as good a tool as any 
other for dealing with the problem.

I should add that superstition has often 
enough been my own refuge. Some years ago I 
instituted a campaign of “font hygiene” in the 
editorial offices of American Scientist, hoping to 
cure various murky computer ills. The prob-
lems were eventually dispelled, but I have no 
confidence that my elaborate precautions had 
anything to with the remedy.

The Spectrum of Bugs
I have sorted the error reports in my diaries into 
five categories, according to severity. The worst 
kind of event is a crash (also known as a freeze 
or a bomb), in which the entire computer system 
comes to a standstill. Getting out of this predica-
ment often requires a “reboot.” The next class of 
malfunction is a total program failure, where a 
single program stops working entirely but the 
rest of the system keeps running. The three less-
er categories I call major program faults, minor 
program faults and cosmetic flaws.

What is the spectrum of bugs in these cat-
egories? Before beginning the diaries, I would 
have guessed that the distribution would be 
similar to that of earthquakes and forest fires 
and other natural disasters: There would be 
lots of little ones and only a few big ones. As 
Figure 2 shows, the actual distribution is just the 
opposite. Crashes are clearly the most common 
events, followed by total program failures, with 
the less severe problems trailing behind.

Reporting bias may have something to do 
with the shape of this spectrum. I was probably 
not as conscientious as I should have been about 
recording cosmetic flaws, and perhaps a fault 
that I consider major would be rated minor by 
more generous observers. But I think the main 
import of the spectrum can be trusted: When a 
computer fails, it usually fails big time.

The reason for this brittleness is no mystery. 
Most computer hardware and software cannot 
tolerate even the smallest malfunction. A single 
erroneous bit will derail an entire computation. 
In computers as in genetics—the analogy is a 
close one—most mutations are not merely harm-
ful but lethal. Once a program gets onto the 
wrong track, there is almost no hope of recovery. 
Fragility is the price paid for the stabilizing effect 
of a digital architecture based on discrete states. 
The machine either functions perfectly or it does 
not function at all.

Cogniscienti will perceive that my statistics 
were gathered on microcomputers without a 
memory-protected multitasking operating sys-
tem. On workstations and larger computers, sys-
tem crashes are rare, because the operating sys-
tem walls off each program in its own space; a 
program that runs amok can only destroy itself. 
The technology of memory protection will even-
tually reach smaller computers as well—it has 
been coming for 30 years now—with the result 
that many system crashes will be downgraded 
to program failures. That is an important gain.
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Other oncoming developments are not so 
encouraging. As computers become more pow-
erful, the size of both the microstate and the 
macrostate grows exponentially. This means 
there will be more pieces susceptible to fail-
ure, and quadratically more interactions among 
those pieces. The advent of parallel processing 
opens up a whole new dimension of poten-
tial errors. And the new software architecture 
known as componentware or document-cen-
tered computing could also make things worse. 
If you have half-a-dozen components all work-
ing on the same document, what happens when 
one of those components does something the 
others don’t like?

Coping with these problems is going to 
require better tools. Up to now most tools for 
debugging have been intended for program-
mers and have been fully useful only with 
access to the source code. They present their 
information in terms of the microstate of the 
machine, which is difficult to relate to events in 
the user’s world. What’s needed is a tool that 
can diagnose faults in the macrostate, advising 
you, for example, that the system has crashed 
because two programs are locked in contention 
for the same hardware resource, or explaining 

that the program you have just tried to launch 
three times in a row needs more memory than is 
currently available. With information like that, 
computers might continue to be just as crazy, 
but people would be saner.

The best answer to the challenge of living 
on intimate terms with fallible computers is 
to somehow create more robust hardware and 
software, which doesn’t go to pieces at the first 
sign of trouble. Ultimately we might aspire to 
build computers that work as well as coffeepots 
or toasters or even lawn mowers—devices that 
tend to fail gradually and gracefully, and also 
rarely. But building a computer as good as a 
coffeepot looks like a daunting challenge. It is a 
task surprisingly similar in some respects to the 
better-known quest for a computer as good as a 
brain. Success will be a long time in coming.
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