
A couple of years ago, I had one of those
annoying moments of self-discovery. Sit-
ting at my computer, I clicked on an icon

to launch a program. The software obediently
uncoiled itself from the storage disk and loaded
into memory—then silently folded up again and
went away. I clicked on the icon again, and the
program went through the same futile panto-
mime. I clicked a third time, and watched the
performance once more. The moment of self-
discovery came just in time to save me from
clicking yet again. What I discovered was that I
must have a fairly peculiar mental model of how
a computer works if I could believe that a fourth
attempt might be any different from the first
three. How long would I have gone on clicking?
Did I think I might outlast the machine—prove
that I’m more stubborn? If I kept clicking long
enough, would I wear down its will to resist?
Did I think of the computer as an animal that
can be trained by repetition and discipline? Or
perhaps I saw it as a dull child who will learn,
eventually, if you keep drumming away at the
same lesson?

Ever since that incident, I have been keeping
a diary of computer bugs and my reactions to
them. Whenever something goes wrong with
one of my computers, I make a note of it: what
happened, what I was doing when it happened,
what I did about it. The bug logs now run to 25
pages. One reason for keeping these records is
to learn something about the nature of computer
malfunctions, but what interests me more is the
human response to the machine and to the little
surprises it holds in store for us. In other words,
the aim is not so much to debug the computer
as to debug myself.

Sphexishness
If I had been starting a car instead of a computer
program, making two or three attempts in a row
would not seem so foolish. You don’t get out and
call the tow truck when the engine fails to catch
the first time you turn the key. And if it were a
lawn mower I were trying to start, several pulls
on the cord would be the norm; a mower that

roared to life on the first try might be disconcert-
ing. Why should a computer be any different
from these machines?

In point of fact, computers are rather different
from lawn-mower engines. From a theoretical
point of view, a digital computer is a determin-
istic machine, whose actions can be predicted
in complete detail. Specifically, a computer can
be considered a deterministic finite-state autom
aton, or FSA. As the name suggests, a machine
of this kind has only a finite number of possible
states, or configurations, available to it. A snap-
action light switch is an extremely simple FSA,
with just two stable states—off and on. A pair
of switches controlling a single lamp make up a
slightly more elaborate FSA, with four states. The
number of states in a digital computer is vastly
larger: Roughly speaking, a computer than can
store m bits of information has 2m possible states.
Values of m commonly exceed 100 million.

Ignoring some technicalities, a deterministic
FSA works as follows. The machine starts out in
some well-defined initial state; then, with each
input received, it makes a transition to a new
state, and possibly also produces some output. In
the case of a computer, the initial state is the con-
dition established when the power is first turned
on; the inputs are events such as pressing a key
or clicking the mouse; the outputs could include
displaying information on a screen or sending
it to a printer. At every instant the state of the
machine is defined by the configuration of all the
bits in memory as well as the bits in the registers
of the central processing unit, and perhaps a few
other bits also. (The bits stored on a magnetic
disk may or may not be part of the machine state,
depending on whether the disk is considered
part of the computer or an auxiliary device.)

A finite-state automaton is deterministic if
its next state and its next output depend only
on its current state and current input. Suppose
in state q the machine receives input α, making
a transition to state p and emitting output β.
Then we know with absolute certainty that if
the machine is ever again in state q, input α will
evoke exactly the same response, so that we will
again see state p and output β. There is no room
for chance or variation. The sequence of events
that brought the machine to state q does not

404 American Scientist, Volume 83

 COMPUTING SCIENCE

DEBUGGING MYSELF

Brian Hayes

Br ian Hayes i s a f o rmer ed i tor o f American
Scientist. Address: 211 Dacian Avenue, Durham, NC
27701. Internet: bhayes@mercury.interpath.net.

matter. Events in the world outside the machine
do not matter. Only the current state and current
input matter.

Within this deterministic vision of computer
operations, my attempts to deal with a comput-
er as if it were a balky lawn mower look fairly
ludicrous. I was in state q and making input α;
but each time I tried, the machine went through
a cycle of operations that immediately returned
it to state q. Input α would then inevitably begin
the cycle all over again. The program was no
more going to be started by continuing to click
on its icon than a burned-out light bulb will be
lit by continuing to flip the wall switch.

Douglas Hofstadter of Indiana University
coined the word sphexish to describe behavior
like mine. Wasps of the genus Sphex go through
a brief ritual before burying a paralyzed cricket
as nourishment for their offspring. If you move
the cricket during the ritual, the wasp has to start
all over again. Keep moving the cricket, and the
wasp will keep repeating the same sequence of
actions. A naturalist once played this trick 40
times in a row on a single wasp. As Hofstadter
points out, the naturalist was being just as sphex-
ish as the wasp. A metanaturalist from another
planet would have had a hard time telling which
species was being manipulated and which was
doing the manipulating. Likewise in my contest
with the computer, we both had to cooperate to
keep up the dance of sphexishness.

Microstates and Macrostates
How embarrassing to be caught exhibiting the
mental habits of an insect! (I really do need
debugging.) But on reading through my diaries,
I am led to wonder whether my behavior was
really so sphexish after all. There is a fair body
of evidence that just trying again sometimes
does work. It’s even possible that if I had gone

ahead and clicked a fourth time, the program
would have launched itself successfully.

At one point in my years of diary-keeping,
I was having trouble with a communications
program. I could start the software, but when I
asked it to dial the telephone, the program died.
This happened on three occasions, all within a
month or so. In each case, I simply restarted the
program—repeating exactly the same sequence
of actions I had followed the first time—and
it worked fine. I never discovered the cause of
these sporadic failures.

Another time, the very program that pro-
voked this long introspective debugging ses-
sion—the program that put me in the sphexish
loop described above—quit without warning. In
this instance, however, when I clicked to restart
it, all was well again. Another program failed
to install correctly when I first loaded it onto a
hard disk, but going through the same series of
operations a second time cleared up the trouble.
The diaries are full of other problems that just go
away on their own or fix themselves overnight.
Evidently, the balky-lawn-mower approach to
computer operation is sometimes effective.

The bug diaries suggest that most of my prob-
lems are recurrent, but they are not reproducible
on demand. For example, the complaint that
turns up most frequently (nine instances) con-
cerns a glitch in my word-processing software.
On occasion the program would dump a jumble
of unprintable characters into a document, like
a digital inkblot. The error occurred follow-
ing a specific sequence of actions, but running
through those actions would not reliably pro-
duce the error; it showed up only about one
time out of 50.

The most infuriating bugs in my collection
marred the operation of a small utility program
whose function was to provide a hierarchical

1995 September–October 405

0

5

10

15

20

25

J J A S O N D J F M A M J J A S O N D J F M A M J
1993 1994 1995

new computer

new word processor

95-09 Bugs F1 Calendar

Figure 1. More than 200 bugs were recorded in two years. Darker bars tally only novel problems, ignoring recurrences.

display of menus and submenus. It was a handy
tool—which now and then crashed the entire
system. In particular, if I selected an item at
some intermediate level in the nested structure
of menus, the probability of a crash was about
0.1. Thus the crashes were just rare enough to
tempt me to live dangerously.

How can these haphazard failures and fluky,
random cures be reconciled with the view of a
computer as a totally deterministic machine?
One answer is that a real, physical computer
isn’t truly deterministic. The finite-state machine
of computer science is an abstraction, or ideal-
ization—something like the dimensionless point
of geometry or the frictionless gears of elemen-
tary physics. A real computer has to be built out
of imperfect parts. Because of hardware failures
or design errors, the machine could conceivably
get stuck between two discrete states. Quantum
fluctuations could cause the system to shift
spontaneously from one state to another. Certain
possible inputs—such as a cosmic ray passing
through a memory chip, or a lightning strike
on the power line, or an irate user’s sledge-
hammer attack—could leave the machine in an
indeterminate state. Any of these phenomena
could disqualify the computer from the status of
finite-state automaton.

A few events of this kind do show up in my
bug diaries. Three times, as I sat down at the
computer in dry winter months, a spark zipped
from my finger to the mouse, with interesting
consequences. But it is extremely unlikely that
outside disturbances or arbitrary changes of
state can explain the hundreds of other incidents
in the diaries. If the inkblot bug in my word pro-
cessor was caused by cosmic-ray strikes, how
did the rays find just the right bit to clobber on
nine occasions, and in three different comput-

ers? The problem with such explanations is
that they explain too much; they can explain
anything.

With very rare exceptions, computers do func-
tion as deterministic finite-state machines. If you
put the machine in the same state and supply the
same input, you will always get the same result.
The catch is that putting the machine in the
same state is no easy matter. A computer with
2100,000,000 possible states will necessarily have
a great many states that superficially look alike
but differ in their internal details.

In trying to reproduce a given state, you might
run the same set of programs and invoke the
same commands on the same data. These vis-
ible aspects of the computer’s configuration can
be termed its macrostate. For every macrostate
there are a multitude of possible microstates,
corresponding to the underlying bit patterns.
Although the same programs are running in two
macrostates, they may be loaded into different
areas of memory, yielding very different micro-
states. Although the same commands are issued,
they may be differently synchronized with the
many unseen background processes that keep
the computer going—processes for refreshing
the display screen, blinking the cursor, reading
the keyboard, and so on. Although a macrostate
seems static, the microstate is changing with
every cycle of the central processor chip, 10 or 50
or even 100 million times per second.

If the computer were making random tran-
sitions through its 2100,000,000 microstates, the
probability of its ever stumbling on the same
state twice would be negligible. (At 100 million
states per second it would take 1015,000,000 years
on average.) Of course the transitions are not
at all random, and their true pattern presum-
ably makes repetition somewhat more likely.
On the other hand, included in the state of most
computers is the state of a built-in clock and cal-
endar, which counts off the milliseconds over a
period of some decades. The computer will not
revisit a state until the calendar “rolls over.”

Because of the one-to-many mapping between
macrostates and microstates, computers can
remain rigidly deterministic in all their internal
workings, but still seem wildly capricious to
the poor sap at the keyboard. It’s a nasty com-
bination. It leaves me unsure whether the best
approach to debugging is to correct the comput-
er’s logical errors or to heal its psychic wound.

The Phases of the Moon
A friend with experience of these matters once
warned me: “Never let the computer know
you’re in a hurry.” The hazard, of course, is that
the machine will sense your impending dead-
line and choose the most inconvenient moment
to crash. The more intelligent computers even
seem to know that Federal Express closes earlier
on Saturday than on weekdays.

It is easy to mock such notions, which seem
to require us to believe in a mischievous spirit
inhabiting the silicon, always on the lookout for

406 American Scientist, Volume 83

system
crashes

program
failures

major
faults

minor
faults

cosmetic
flaws

0

20

40

60

80

100

95-09 Bugs F2 Spectrum

Figure 2. Spectrum of bugs classified according to their severity.

a chance to vex us. (Another friend advises me:
“Don’t anthropomorphize computers. They hate
it.”) But the idea of a computer reacting differ-
ently to a hurried user is not as implausible as it
may seem. In the first place, urgency brings out
a different spectrum of human bugs. I am capable
of making mistakes either at leisure or in haste,
but they tend to be different kinds of mistakes,
and they probably expose different kinds of
defects in the computer hardware and software.

Sometimes a speedy typist can create havoc
even without making an error. One of the most
devastating of all computer bugs was discov-
ered about 10 years ago in the control soft-
ware of a radiation-therapy machine called the
Therac-25. The bug could lead to horrendous
overdoses, and three patients died as a result.
It turned out that one way of triggering the bug
was to rapidly skip through a data-input screen,
which allowed the radiation beam to be turned
on before the computer had had time to adjust
all the settings to their correct values. Typing the
same sequence of keystrokes at a slower pace
caused no trouble.

Bugs so erratic and mysterious that they seem
to depend on the phase of the moon are an
old programmers’ joke, but at least one such
bug really did exist. (The story is told in Eric
Raymond’s New Hacker’s Dictionary.) A program
written by Guy L. Steele, Jr., who was then at
MIT, rejected its own data files if they had been
written during certain phases of the moon. The
explanation was not in the least supernatu-
ral. The data files included a time stamp, and
Steele had playfully added the lunar phase to
the usual date and time information. At certain
phases of the moon, the time stamp exceeded an
80-character limit on line lengths, with the result
that the file became unreadable.

Prolonged exposure to subtle and elusive
bugs like these can lead people to approach the
computer in an attitude of superstitious awe.
They cling to whatever tricks or procedures
worked the last time, without understanding
the purpose of their own actions. They fear
installing new versions of software, which might
upset the delicate equilibrium of the entire sys-
tem. The more severely afflicted practice cleans-
ing rituals at the keyboard or offer sacrifices to
propitiate the fickle gods of computation. I cer-
tainly don’t endorse such behavior, which I see
as another variety of sphexism. And yet I can’t
offer an alternative approach that can guarantee
better results.

Every one of the malfunctions recorded in
my diaries has a logical, rational explanation.
I’m utterly certain of that. The fact remains,
however, that I have been able to track down
the logical, rational cause in only a handful of
cases. Those few diagnostic successes concern
problems in software I wrote myself or pro-
grams for which I had the direct assistance of
the developer. Without access to the source code
(the original program text), there is little hope of
truly understanding a software fault. In that cir-

cumstance, superstition is as good a tool as any
other for dealing with the problem.

I should add that superstition has often
enough been my own refuge. Some years ago I
instituted a campaign of “font hygiene” in the
editorial offices of American Scientist, hoping to
cure various murky computer ills. The prob-
lems were eventually dispelled, but I have no
confidence that my elaborate precautions had
anything to with the remedy.

The Spectrum of Bugs
I have sorted the error reports in my diaries into
five categories, according to severity. The worst
kind of event is a crash (also known as a freeze
or a bomb), in which the entire computer system
comes to a standstill. Getting out of this predica-
ment often requires a “reboot.” The next class of
malfunction is a total program failure, where a
single program stops working entirely but the
rest of the system keeps running. The three less-
er categories I call major program faults, minor
program faults and cosmetic flaws.

What is the spectrum of bugs in these cat-
egories? Before beginning the diaries, I would
have guessed that the distribution would be
similar to that of earthquakes and forest fires
and other natural disasters: There would be
lots of little ones and only a few big ones. As
Figure 2 shows, the actual distribution is just the
opposite. Crashes are clearly the most common
events, followed by total program failures, with
the less severe problems trailing behind.

Reporting bias may have something to do
with the shape of this spectrum. I was probably
not as conscientious as I should have been about
recording cosmetic flaws, and perhaps a fault
that I consider major would be rated minor by
more generous observers. But I think the main
import of the spectrum can be trusted: When a
computer fails, it usually fails big time.

The reason for this brittleness is no mystery.
Most computer hardware and software cannot
tolerate even the smallest malfunction. A single
erroneous bit will derail an entire computation.
In computers as in genetics—the analogy is a
close one—most mutations are not merely harm-
ful but lethal. Once a program gets onto the
wrong track, there is almost no hope of recovery.
Fragility is the price paid for the stabilizing effect
of a digital architecture based on discrete states.
The machine either functions perfectly or it does
not function at all.

Cogniscienti will perceive that my statistics
were gathered on microcomputers without a
memory-protected multitasking operating sys-
tem. On workstations and larger computers, sys-
tem crashes are rare, because the operating sys-
tem walls off each program in its own space; a
program that runs amok can only destroy itself.
The technology of memory protection will even-
tually reach smaller computers as well—it has
been coming for 30 years now—with the result
that many system crashes will be downgraded
to program failures. That is an important gain.

1995 September–October 407

Other oncoming developments are not so
encouraging. As computers become more pow-
erful, the size of both the microstate and the
macrostate grows exponentially. This means
there will be more pieces susceptible to fail-
ure, and quadratically more interactions among
those pieces. The advent of parallel processing
opens up a whole new dimension of poten-
tial errors. And the new software architecture
known as componentware or document-cen-
tered computing could also make things worse.
If you have half-a-dozen components all work-
ing on the same document, what happens when
one of those components does something the
others don’t like?

Coping with these problems is going to
require better tools. Up to now most tools for
debugging have been intended for program-
mers and have been fully useful only with
access to the source code. They present their
information in terms of the microstate of the
machine, which is difficult to relate to events in
the user’s world. What’s needed is a tool that
can diagnose faults in the macrostate, advising
you, for example, that the system has crashed
because two programs are locked in contention
for the same hardware resource, or explaining

that the program you have just tried to launch
three times in a row needs more memory than is
currently available. With information like that,
computers might continue to be just as crazy,
but people would be saner.

The best answer to the challenge of living
on intimate terms with fallible computers is
to somehow create more robust hardware and
software, which doesn’t go to pieces at the first
sign of trouble. Ultimately we might aspire to
build computers that work as well as coffeepots
or toasters or even lawn mowers—devices that
tend to fail gradually and gracefully, and also
rarely. But building a computer as good as a
coffeepot looks like a daunting challenge. It is a
task surprisingly similar in some respects to the
better-known quest for a computer as good as a
brain. Success will be a long time in coming.

Bibliography
Hofstadter, Douglas R.. 1979. Gödel, Escher, Bach: an Eternal

Golden Braid. New York: Basic Books. pp. 360–361.
Leveson, Nancy G., and Clark S. Turner. 1993. An investi-

gation of the Therac-25 accidents. Computer, July, pp.
18–41.

Raymond, Eric (ed.) 1991. The New Hacker’s Dictionary.
Cambridge, Mass.: The MIT Press. pp. 280–281.

408 American Scientist, Volume 83

Circle 82 on Reader Service Card

