
Digital computers are built out of circ u i t s
that have definite, discrete states: on or
o ff, zero or one, high voltage or low volt-

age. Engineers go to great lengths to make sure
these circuits never settle into some intermediate
condition. Quantum-mechanical systems, as it
happens, offer a guarantee of discreteness with-
out any engineering effort at all. When you mea-
s u re the spin orientation of an electron, for ex-
ample, it is always either “up” or “down,” never
in between. Likewise an atom gains or loses en-
e rgy by making a “quantum jump” between spe-
cific energy states, without passing through in-
termediate energy levels. So why not build a
digital computer out of quantum-mechanical de-
vices, letting particle spins or the energy levels of
atoms stand for binary units of information?

One answer to this “Why not?” question is
that you can’t avoid building a quantum-me-
chanical computer even if you try. Since quan-
tum mechanics appears to be a true theory of na-
t u re, it governs all physical systems, including
the transistors and other components of the com-
puter on your desk. All the same, quantum ef-
fects are seldom evident in electronic devices;
components and circuits are designed so that the
quantum states of many millions of electrons are
averaged together, blurring their discre t e n e s s .

In a quantum computer, the basic working
parts would probably have to be individual elec-
t rons or atoms, and so another answer to the
“Why not?” question is that building such a ma-
chine is simply beyond our skills. And even
apart from the challenges of atomic-scale fabrica-
tion, there are some ticklish conceptual issues.
Quantum systems have some famously weird
b e h a v i o r, such as the phenomenon called quan-
tum interference. Two nearby transistors can
switch on and off independently, but two adja-
cent quantum objects (such as two electrons) are
inextricably coupled, so that the future state of
one electron cannot be predicted without taking
into account the surrounding electrons. Indeed,
an isolated electron can interfere with itself!

A third answer to the “Why not?” question is
“Why bother?” Until recently there was no re a-
son to believe that a quantum computer could
do anything a classical computer couldn’t. This
situation has now changed dramatically. The ex-
act place of quantum technology in the overall
h i e r a rchy of computing machines is still not set-
tled, but a few recently discovered algorithms of-
fer intriguing hints. It turns out that a pro g r a m
written for a quantum computer can factor larg e
numbers faster than any known algorithm for a
classical machine. The quantum factoring algo-
rithm makes essential use of interference eff e c t s ,
which become a source of parallelism, allowing
the computer to explore all possible solutions to a
p roblem simultaneously. Factoring is a task of
much theoretical interest, and it also has practical
applications in cryptography, so these discoveries
have attracted considerable notice.

F e y n m a n ’s Question
An early investigator of quantum computing
was the physicist Richard P. Feynman (1), al-
though he looked at the issue mainly through the
other end of the telescope, asking not what quan-
tum mechanics could do for computing but what
computing could contribute to the understand-
ing of quantum physics. A classical computer
bogs down when it is made to simulate a quan-
tum system; Feynman suggested that a quantum
computer might be better suited to the task.

At about the same time, Paul Benioff of the Ar-
gonne National Laboratory devised an elaborate
quantum-mechanical simulation of a Turing ma-
chine, the standard benchmark of classical com-
puting (2). Then in 1985 David Deutsch of the
University of Oxford published another concep-
tual model of a quantum computer, one re l y i n g
d i rectly on the interference of quantum states (3).
In 1992 Deutsch and Richard Jozsa, also of Ox-
f o rd, formulated a few problems that could be
solved faster with such a quantum computer
than with a conventional Turing machine (4).
This was the first direct evidence that quantum
computers might be superior to classical ones.

T h e re followed a sequence of papers re p o r t i n g
further developments and refinements in quan-
tum computing (5, 6, 7), but the most arre s t i n g

304 American Scientist, Volume 83

COMPUTING SCIENCE

THE SQUARE ROOT OF NOT

Brian Hayes

Brian Hayes is a former editor of American Scientist.
A d d re s s : 2 11 Dacian Av e n u e , D u rham, NC 27701. I n t e r n e t :
b h a y e s @ m e rc u r y. i n t e r p a t h . n e t .

news was the announcement of a quantum-me-
chanical algorithm for factoring, devised by Peter
W. Shor of AT&T Bell Laboratories (8). In all
known classical factoring algorithms, the amount
of time needed to find the prime factors of a
number grows as an exponential function of the
size of the number, making the algorithms im-
practical for very large numbers. (The factoring
re c o rd at the moment is less than 150 decimal
digits.) With Shor’s quantum algorithm, the time
needed grows as a polynomial function of the
n u m b e r’s size. For example, factoring an n- d i g i t
number by classical methods might re q u i re 2n

steps (an exponential function) whereas the
quantum algorithm could find the factors in n2

steps (a polynomial). (The actual functions are
d i ff e rent from these, but for any choice of func-
tions, there is always a value of n beyond which
the exponential function is larger than the poly-
nomial one.)

Logic Gates
Conventional computers are built out of Boolean
logic gates, notably those that implement the log-
ic functions A N D, O R and N O T. What are the corre-
sponding primitive elements of a quantum com-
puter? These building blocks too can be c o n c e i v e d
as logic gates, but they operate on a very diff e r-
ent kind of logic, in which probabilities play a
c rucial role. What follows is a sketch of the ideas
underlying the construction of quantum logic
gates. It is based on a lucid expository article by
Gilles Brassard of the Université de Montreal (9)
and on a talk that Shor delivered in March at the
University of Maryland Baltimore County.

The simplest classical Boolean device is the
N O T gate, which accepts a single bit of input and
p roduces a single bit of output; the action of the
gate is to negate or invert the input. In other
w o rds, if the input is a 0, the output is a 1; if the
input is a 1, the output is a 0. Two N O T gates con-
nected in series re s t o re the input to its original
state: An initial 0 is changed to a 1 by the first
gate and then changed back to a 0 by the second
gate. Thus a double negative is equivalent to the
identity function.

The N O T gate is wholly deterministic: Once the
input is known, the output is determined with
absolute certainty. Suppose we relax this stan-
d a rd of determinism somewhat, creating a pro b-
abilistic logic gate that usually inverts its input—
say 90 percent of the time—but occasionally
passes the input through unchanged. This trans-
formation can be re p resented by a pro b a b i l i t y
matrix, as follows:

0 1
0 0.1 0.9
1 0.9 0.1

H e re the numbers along the left edge, labeling
the rows of the matrix, are the inputs to the gate,
and the column labels at the top are the outputs.

To find the probability that an input of 0 pro-
duces an output of 1, you read along the 0 row to
w h e re it intersects the 1 column. Note that even
though the entries in the matrix are fractional val-
ues, this “probably N O T” gate is still a binary de-
vice whose inputs and outputs are always either
0 or 1. Also note that the probabilities in each col-
umn and each row sum to 1, indicating that
every possible combination of input and output
has been accounted for.

The operation of the simple deterministic N O T
gate can be re p resented in the same matrix nota-
tion. Here is the transformation matrix:

0 1
0 0 1
1 1 0

In this case the probability of getting a 0 output
f rom a 0 input is 0 (it will never happen) where a s
the probability of transforming a 0 into a 1 is 1
(certainty).

At the opposite pole from a completely deter-
ministic logic gate is one that completely ran-
domizes its input, producing a 0 or 1 output with
equal pro b a b i l i t y. The transformation matrix for
this function is:

0 1
0 1⁄2 1⁄2
1 1⁄2 1⁄2

In effect, the gate models a fair coin flip, and so it
is designated C F. (A gate of this kind may seem
totally useless, but in fact randomness is an im-
portant re s o u rce in certain algorithms.)

Quantum Logic Gates
Both the ordinary Boolean N O T gate and the pro b-
abilistic versions of it are still constructions of
classical physics. A quantum-mechanical gate is
far stranger. The strangeness goes to the very ro o t
of the quantum-computational process, to the
bits themselves, which to emphasize their un-

1995 July–August 305

Figure 1. Logic gates are fundamental units of computer architecture—
the N O T gate for classical machines, the coin-flip gate (C F) for
probabilistic ones and the quantum coin flip (Q C F) for quantum
computers. The Q C F gate calculates “the square root of N O T.”

conventional nature are sometimes called q u b i t s.
W h e reas classical bits have the value 0 or 1 at all
moments, qubits can occupy a “superposition”
of the 0 and 1 states during certain stages of a
computation. This is not to say that the qubit has
some intermediate value between 0 and 1.
R a t h e r, the qubit is in both the 0 state and the 1
state at the same time, to varying extents. When
the state of the qubit is eventually observed or
m e a s u red, it is invariably either 0 or 1.

Quantum states and their superpositions are
re p resented by means of a notational device
called a ket, written “| 〉.” The state of a qubit is
given as α|0〉 + β|1〉, where the coefficients α a n d
β a re the “amplitudes” of each state. In general
the amplitudes are complex numbers (with both
a real and an imaginary part), but the examples
c o n s i d e red here will be confined to positive and
negative real numbers. The amplitude associated
with a state determines the probability that the
qubit will be found in that state; specifically, the
p robability is equal to the square of the absolute
value of the corresponding amplitude.

The relation between amplitude and pro b a b i l-
ity can be made clearer with an example. A quan-
tum gate that Brassard designates Q C F (for “quan-
tum coin flip”) has the following matrix of
a m p l i t u d e s :

|0〉 |1〉

|0〉 1⁄√−2 –1⁄√−2
|1〉 1⁄√−2 1⁄√−2

To find the probability of each of these transi-
tions, take the absolute value of the corre s p o n d-
ing amplitude and square it: |1⁄√−2|2 is equal to 1⁄2,
and so is |–1⁄√−2|2. Thus all the entries in the pro b a-
bility matrix are 1⁄2, and the quantum-mechani-
cal Q C F gate appears on first examination to be
identical to the classical C F gate. Either a 0 or a 1
signal passing through the Q C F gate has an equal
chance of coming out a 0 or a 1.

Under the surface, however, the C F and Q C F
gates are not at all alike. A way to see the diff e r-
ence is to link two gates in series. As noted above,
two N O T gates in sequence compose the identity
function. Two C F gates are also easy to analyze.
Whatever the value of the initial input, the first C F
gate produces a 0 or a 1 at random, and the sec-
ond gate randomizes this value again. Hence any
number of C F gates in sequence are equivalent in
function to a single C F g a t e .

Two Q C F gates in series work very diff e re n t l y.
In a quantum-mechanical system it is not possi-
ble to assign a definite value to the unobserved
intermediate signal between the two gates. The
output of the first Q C F gate is not a 0 or a 1 but a
superposition of |0〉 and |1〉 states. Specifically, if
the input to the first gate is a 1, the output of that
gate is the superposition 1⁄√−2|0〉 + 1⁄√−2|1〉, as indicat-
ed by the matrix of amplitudes. Now this super-
position of states becomes the input to the second
Q C F gate, which acts on it according to the same

amplitude matrix. The 0 part of the superposi-
tion gets transformed into 1⁄√−2(1⁄√−2|0〉 – 1⁄√−2|1〉), while
the 1 part becomes 1⁄√−2(1⁄√−2|0〉 + 1⁄√−2|1〉). Thus the en-
t i re state of the system becomes

1⁄√−2(1⁄√−2|0〉 – 1⁄√−2|1〉) + 1⁄√−2(1⁄√−2|0〉 + 1⁄√−2|1〉).
Multiplying out the various factors of 1⁄√−2 y i e l d s
1⁄2(|0〉 – |1〉 + |0〉 + |1〉); now the +|1〉 and –|1〉 c o m-
ponents cancel, leaving 1⁄2(|0〉 + |0〉), or simply |0〉.
A similar analysis shows that when the input to
the first gate is a 0, the output observed at the sec-
o n d gate is a 1. The two gates implement the N O T
function: (Q C F)2 = N O T. Accord i n g l y, a single Q C F
gate is said to calculate “the square root of N O T. ”

T h e re is something decidedly counterintuitive
about these results. Passing a signal through one
Q C F gate randomizes it, yet putting two Q C F g a t e s
in a row yields a deterministic result. It is as if we
had invented a machine that first scrambles eggs
and then unscrambles them. There is no ana-
logue of this machine in the more familiar world
of classical physics.

The source of these odd effects is the phenom-
enon of quantum interference. The superposition
of states can be thought of as a superposition of
waves, which either re i n f o rce or cancel depend-
ing on their amplitude and phase. Just as two co-
h e rent light sources combine to produce a pat-
tern of light and dark “fringes,” two quantum
states interfere either constructively or destru c-
tively according to the sign of their amplitudes.

Consider again what happens when two C F
gates or two Q C F gates are wired in series. In the
classical case, there are four possible sequences of
events, which can be imagined as paths thro u g h
the branches of a tree. Suppose the initial state, at
the root of the tree, is a 1, and the first C F gate hap-
pens to produce a 0; the probability of this event is
1⁄2. Now if the second C F gate also emits a 0, again
with probability 1⁄2, the overall probability of the
e n t i re 1→ 0→ 0 path is 1⁄2 × 1⁄2, or 1⁄4. The other
t h ree paths, 1→0→1, 1→ 1→0 and 1→ 1→1 ,
have the same probability of 1⁄4. Since two paths
yield a 0 as the final state and two paths end in a 1,
each of these outcomes has probability 1⁄2.

For Q C F gates the analysis is framed in terms of
amplitudes instead of probabilities. The first Q C F
gate transforms the initial |1〉 state into a |0〉 s t a t e
with an amplitude of 1⁄√−2, then the second Q C F g a t e
p roduces a final |0〉 state with a further amplitude
of 1⁄√−2. Multiplying these component amplitudes
(just as one would multiply probabilities) yields
an overall amplitude of 1⁄2 for the computational
path |1〉→ |0〉→ |0〉. The amplitude is the same for
the paths |1〉 → |1〉 → |0〉 and |1〉 → |1〉 → |1〉. In the
case of the path |1〉→ |0〉 →|1〉, however, the re s u l t
is diff e rent; because the transition from |0〉 to |1〉
has an amplitude of –1⁄√−2, the total amplitude for
this path is –1⁄2. In the absence of interference, this
change of sign would still have no effect on the
outcome of an experiment: Squaring the absolute
value of each amplitude would yield four path
p robabilities of 1⁄4, which would sum to a pro b a-

306 American Scientist, Volume 83

bility of 1⁄2 for the |0〉 final state and 1⁄2 for the |1〉 f i-
nal state. Because of interference, however, the
two paths leading to the |1〉 state, with amplitudes
of 1⁄2 and –1⁄2, cancel each other out, whereas the |0〉
paths, both with amplitudes of 1⁄2, sum to yield a
total amplitude (and also a total probability) of 1.

Reversible Logic
The Q C F gate demonstrates some principles of
quantum computation, but it is not enough to
build a complete quantum computer, any more
than N O T gates are enough to build a classical
c o m p u t e r. Performing useful calculations re-
q u i res gates that process more than one bit (or
qubit) at a time. For example, conventional com-
puters make extensive use of A N D gates that ac-
cept two input bits and have a single output bit;
the output is a 1 only if both input bits are 1’s.

In designing gates for a quantum computer, cer-
tain constraints must be satisfied. In particular, the
matrix of transition amplitudes must be u n i t a r y,
which implies, roughly speaking, that it conserves
p robability: The sum of the probabilities of all pos-
sible outcomes must be exactly 1. A consequence
of this re q u i rement is that any quantum comput-
ing operation must be reversible: You must be able
to take the results of an operation and put them
back through the machine in the opposite dire c-
tion to recover the original inputs. A N D gates do
not obey this rule, since information is irre t r i e v-
ably lost when two input bits are condensed into a
single output bit. Reversible gates must have the
same number of inputs and outputs.

As it happens, the study of reversible comput-
ing has gotten a lot of attention lately, largely be-
cause of the discovery by Charles H. Bennett and
Rolf Landauer of IBM that a reversible computer
can perform any computation and can do so with
arbitrarily low energy consumption (1 0). A re-
versible gate devised by Tommaso To ffoli of MIT
is a “universal” classical gate: A computer could
be built out of copies of this gate alone (11).
Deutsch has shown that a similar gate is universal
for quantum computers (1 2). Both the To ffoli and
the Deutsch gates have three inputs and three out-
puts, but more recently two-qubit gates have also
p roved universal for quantum computations (1 3).

Practical quantum technologies are surely years
or decades away, and yet a few implementation

schemes are already under discussion. The idea
closest to existing electronic technology relies on
“quantum dots,” which are isolated conductive
regions within a semiconductor substrate (1 4).
Each quantum dot can hold a single electro n ,
whose presence or absence re p resents one qubit of
information. Another proposal is based on a hy-
pothetical polymeric molecule in which the indi-
vidual subunits could be toggled between the
g round state and an excited state (1 5). And David
P. DiVincenzo of IBM has described a mechanism
by which isolated nuclear spins would interact—
and thereby compute—when they are brought to-
gether by the meshing of microscopic gears (1 3).

Quantum Parallelism
The extraordinary power of quantum computing
comes from exploiting superposition and inter-
f e rence. Consider what happens when a classical
computer is asked to search among all possible
patterns of n bits for a particular pattern that sat-
isfies some stated condition. With a single pro c e s-
s o r, the computer must examine each pattern se-
q u e n t i a l l y, and since there are 2n such patterns,
the task is intractable for large values of n. Wi t h
parallel processing the search can be completed
in a single step, but only if you can build 2n

p rocessors, which again becomes impractical as n
g rows large. A quantum computer might bre a k
the logjam, at least for some problems. After set-
ting up the right initial superposition of states,
and allowing it to evolve according to the right
unitary transition matrix, a single quantum
p rocessor could sift through all the qubit patterns
s i m u l t a n e o u s l y. Destructive interference would
s u p p ress those patterns that were not of intere s t ,
while constructive interference would enhance
those that met the stated conditions.

Factoring an integer can be formulated as such
a search problem. The aim is to find a pattern of
n/2 or fewer bits that evenly divides a given n- b i t
n u m b e r. The simplest classical algorithm (albeit
not the best one) searches for a factor by trial di-
vision, requiring either 2n/2 steps on a single
p rocessor or 2n/2 processors. In principle, a quan-
tum computer might be designed to perform the
s e a rch directly in a single step, by starting with a
superposition of all 2n/2 qubit patterns and al-
lowing them to interfere with one another ac-

1995 July–August 307

Figure 2. Four computational paths through a pair of C F gates (l e f t) yield a 0 or 1 with equal probability, whereas two of
the paths through a pair of Q C F gates (r i g h t) have amplitudes that interfere destructively, making a 0 the certain outcome.

c o rding to some carefully crafted unitary transi-
tion matrix. When the computer halted, it would
be in a state re p resenting a factor of the number.
U n f o r t u n a t e l y, no one has any idea how to cre a t e
the appropriate transition matrix or how to build
a machine that would implement it.

S h o r’s quantum factoring algorithm is less di-
rect, but it still relies on quantum interference to
identify one special qubit pattern out of many.
Quantum computation is used to solve the con-
g ruence xr ≡ 1 modulo N, where N is the number
to be factored and x is a random integer. Having
found the least value of r that satisfies this re l a-
tion, a straightforward classical calculation yields
a factor of N.

If a quantum factoring algorithm is faster than
any known classical algorithm, does that mean
quantum computers are more powerful than clas-
sical ones? Curiously, the answer to this question
is still unclear. Part of the difficulty of resolving it
is that the computational status of factoring itself
is uncertain. No classical polynomial-time factor-
ing algorithm is known, but no one has pro v e d
that such an algorithm cannot exist. Thus factor-
ing could yet turn out to be an “easy” problem, in
which case the quantum computer’s prowess in
this special realm will not have much general sig-
nificance. Far more convincing would be an eff i-
cient quantum method for a problem with better
c redentials attesting to its intractability, such as

the traveling-salesman problem; but such a dis-
covery is considered unlikely (1 6).

Whatever the theoretical standing of the fac-
toring problem, its practical importance is un-
questioned. “Public-key” cryptography depends
for its security on the difficulty of factoring larg e
integers. If it appears possible to build quantum
computers, or even special-purpose quantum
factoring engines, the secrecy of encrypted mes-
sages will be in jeopard y. But if quantum me-
chanics undermines one form of cryptography,
it could also supply a replacement. Standing
alongside the new study of quantum computing
is the equally novel field of quantum cryptogra-
p h y, which derives its strength from the same
mysterious physical laws.

R e f e r e n c e s
1 . R i c h a rd P. Feynman. 1982. Simulating physics with

computers. International Journal of Theoretical Physics
2 1 : 4 6 7 – 4 8 8 .

2 . Paul Benioff. 1980. The computer as a physical system:
A microscopic quantum mechanical Hamiltonian mod-
el of computers as re p resented by Turing machines.
Journal of Statistical Physics 2 2 : 5 6 3 – 5 9 1 .

3 . David Deutsch. 1985. Quantum theory, the Churc h - Tu r-
ing principle and the universal quantum computer. P ro -
ceedings of the Royal Society of London A 4 0 0 : 9 7 – 11 7 .

4 . David Deutsch and Richard Jozsa. 1992. Rapid solution
of problems by quantum computation. P roceedings of
the Royal Society of London A 4 3 9 : 5 5 3 – 5 5 8 .

5 . André Berthiaume and Gilles Brassard. 1994. Oracle
quantum computing. Journal of Modern Optics
4 1 : 2 5 2 1 – 2 5 3 5 .

6 . Ethan Bernstein and Umesh Vazirani. 1993. Quantum
complexity theory. P roceedings of the 25th Annual ACM
Symposium on Theory of Computing, pp. 11 – 2 0 .

7 . Daniel R. Simon. 1994. On the power of quantum com-
putation. P roceedings of the 35th Annual Symposium on
Foundations of Computer Science, pp. 11 6 – 1 2 3 .

8 . Peter W. Shor. 1994. Algorithms for quantum compu-
tation: discrete logarithms and factoring. P roceedings of
the 35th Annual Symposium on Foundations of Computer
S c i e n c e, pp. 124–134.

9 . Gilles Brassard. 1994. Cryptology column—Quantum
computing: The end of classical cryptography? S I G A C T
N e w s 2 5 (4) : 1 5 – 2 1 .

1 0 . Charles H. Bennett and Rolf Landauer. 1985. The fun-
damental physical limits of computation. S c i e n t i f i c
A m e r i c a n 2 5 3 (1) : 4 8 – 5 6 .

11 . Tommaso To ffoli. 1980. Reversible computing. In S e v -
enth Colloqium on Automata, Languages and Pro g r a m m i n g,
J. W. de Bakker and J. van Leeuwen, eds. Berlin:
S p r i n g e r- Verlag. pp. 632–644.

1 2 . David Deutsch. 1989. Quantum computational net-
works. P roceedings of the Royal Society of London
A 4 2 5 : 7 3 – 9 0 .

1 3 . David P. DiVincenzo. 1995. Two-bit gates are universal
for quantum computation. Physical Review A 5 0 : 1 0 1 5 .

1 4 . Craig S. Lent, Douglas Tougaw and Wolfgang Poro d .
1994. Quantum cellular automata: The physics of com-
puting with arrays of quantum dot molecules. P ro c e e d -
ings of the Workshop on Physics and Computation—
Physcomp ‘94, pp. 5–13.

1 5 . Seth Lloyd. 1993. A potentially realizable quantum
c o m p u t e r. S c i e n c e 2 6 1 : 1 5 6 9 – 1 5 7 1 .

1 6 . Charles H. Bennett, Ethan Bernstein, Gilles Brassard
and Umesh V. Vazirani. 1994. Strengths and weakness-
es of quantum computing. Pre p r i n t .

308 American Scientist, Volume 83

