
Computing Science

A Computer with Its Head Cut Off
Brian Hayes

/hen Silicon Valley wants to look good,
it measures itself against Detroit. The
comparison goes like this: If automo

tive technology had kept pace with computer
technology over the past few decades, you would
now be driving a V-32 instead of a V-8, and it
would have a top speed of 10,000 miles per hour.
Or you could have an economy car that weighs 30
pounds and gets a thousand miles to a gallon of
gas. In either case the sticker price of a new car
would be less than $50.

In response to all this goading, Detroit grum
bles: Yes, but would you really want to drive a car
that crashes twice a day?

Although weighing cars against computers is
not quite fair to either industry, the comparison
does Uluminate the extraordinary record of recent
progress in microelectronics and computer tech
nology. The performance of computer systems has
been doubling every two years for 20 years or
more, so that a computer today is a thousand
times more powerful than one built in the mid-
1970s. It is an impressive record, perhaps unprece
dented in the history of human ingenuity. And yet
looking at that steeply rising performance curve
prompts a nervous question: Where will the next
doubling come from, and the doubling after that?

Here I want to describe one candidate architec
ture for the next generation of high-performance
computer systems. It goes by the very long and
unwieldy name of very-long-instruction-word ar
chitecture, or VLIW. It is not a new idea, but it is
newly fashionable, partly because of reports that
two major manufacturers in the computer indus
try, Intel and Hewlett-Packard, plan to collabo
rate on VLIW designs. I would not presume to
judge whether VLIW is the best bet for the future
of computing, but it is being considered seriously
enough to merit wider discussion.

Computer Architecture
Much of the performance increase in computer
systems has come from advances in the fabrication
of semiconductor devices. Individual transistors
switch faster, and so circuits can be run at a higher
speed. But improvements in the chipmaker's art

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@mercuiy.interpath.net.

cannot account for all of the performance gains in
the past 20 years. Another contribution has come
from changes in computer architecture—the way
the basic building blocks of the computer are or
ganized and interconnected.

The central processing unit of a computer has
two main subsystems. On the one hand there is
the data-manipulating machinery, which includes
adders, multipliers, comparators and the like, as
well as registers for the temporary storage of data.
On the other hand is the instruction-manipulat
ing machinery, which decodes and interprets the
instructions that make up a computer program.
These two parts of the machine are called the data
path and the control path. A third component, the
system clock, acts like a metronome beating out a
steady rhythm to synchronize activity throughout
the processor.

The evolution of computer architecture can be
viewed as a kind of dialectical contest between the
data path and the control path, with each section
of the processor competing for its share of re
sources. Ultimately the competition is for silicon
"real estate": If the control apparatus grows larger,
there is less room for the data path, and vice versa.

In a very simple computer it is easy to see ex
actly how the control path steers computations in
the data path. Suppose the data path includes
function units for just four operations, such as ad
dition, subtraction, multiplication and division. A
program instruction can specify one of these oper
ations by activating the appropriate function unit
and turning off all the rest. The most efficient en
coding would set aside two binary digits (bits) to
specify the operation; the two bits have four pos
sible values (00, 01, 10 and 11), which can be
matched up in any convenient way with the four
arithmetic operations. A circuit called a two-into-
four decoder takes the two bits as input and acti
vates one of four output lines accordingly.

Early computer designers labored to pack as
much capability as possible into each instruction
and thus gave a major share of resources to the
control path. There were at least three reasons for
adopting this strategy. First, more-powerful in
structions would make life easier for the program
mer. Second, they promised higher performance:
If each instruction could accomplish more, then
the computer could complete a task with fewer
instructions. The third reason is related to the sec-

126 American Scientist, Volume 83



ond: Programs made up of fewer instructions take
up less room in memory. The principal drawback
of the strategy was the grotesque complexity of
the decoder and control unit needed to implement
very complex instructions.

A solution to this problem was devised remark
ably early in the history of electronic digital com
puting. In 1951 Maurice V Wilkes of the University
of Cambridge proposed the idea of microprogram
ming, which turns the control unit into a miniature
computer within the computer. Instead of building
a tangled web of hardware gates and latches to
translate instruction words into control actions, the
designer creates a sequence of microinstructions, or
microcode, whose bits correspond more or less di
rectly to the necessary control signals. The micro
code is stored in a special memory array within the
processor. The original program instruction—now
called a macroinstruction—becomes a pointer into
this memory, selecting which sequence of microin
structions is to be executed.

Microprogramming was slow to catch on until
it was adopted by IBM in the System/360 series of
mainframe computers in the 1960s. Thereafter it
became very popular, and by 1980 virtually all
computers were microprogrammed. Two styles of
microcode evolved. Horizontal microprograms
are short and fat; in the limiting case the micro
program for each macroinstruction consists of a
single wide microinstruction with one bit for each
control signal in the processor. Vertical micropro
grams are tall and skinny, with narrower microin
structions that need some degree of decoding be
fore they can be supplied to the control circuitry.

The RISC Rebellion
In the late 1970s a rebellion was launched against
complex microprogrammed architectures. The
ringleaders were John Cocke of IBM, David A. Pat
terson of the University of California at Berkeley
and John L. Hennessy of Stanford University. They
found that the complicated instructions designers
had struggled to build into the hardware were ac
tually slowing the system down. Some of these in
structions required dozens of clock cycles to com
plete their execution; moreover, the intricacy of the
tasks to be accomplished within each cycle set a
limit on the clock rate. Computers, it seemed, could
be made more powerful by removing some of their
most sophisticated features. Patterson named the
new stripped-down architecture the Reduced In
struction Set Computer, or RISC.

As a rule, RISC chips have no microcode; the
instruction format is simple enough for direct
hardware decoding. The simplified control path
leaves more room for the data path and also al
lows higher clock rates. Perhaps most important,
RISC processors attempt to maintain an average
execution rate of one instruction per clock cycle.

The invention of RISC architecture is often seen
as a reaction against microprogramming, but,
paradoxically, it can also be viewed as the apothe
osis of microcode. In a sense, what has been re

moved from a RISC is not the microcode but the
macrocode; the instructions recognized by the
processor are closer to vertical microinstructions
than to traditional macroinstructions. Think of a
RISC processor as a lobotomized computer, one
that is missing the higher functions needed for de
coding and interpreting macroinstructions.

What about ease of programming? Although
writing software directly in the instruction set of
a RISC processor would be quite difficult, this
drawback has ceased to be an issue because al
most all programming is now done in higher-lev
el languages. Only the compiler—the program
that translates the higher-level notation into the
native language of the processor—has to know
about the primitive instructions recognized by
RISC hardware.

RISC chips have come to totally dominate the
market for scientific workstation computers. They
are also starting to show up in mass-market ma
chines, notably those based on the PowerPC chip
developed by IBM, Motorola and Apple Computer.

The Superscalar Solution
A RISC chip that completes an instruction in every
clock cycle would seem to represent a limiting case.
How could it be made to compute any faster, ex
cept by boosting the clock rate? The answer is that
it must complete multiple instructions per cycle.

The most direct way of extending RISC princi
ples to gain still greater speed is called a super
scalar architecture. The basic idea is to build a
processor whose data path includes multiple func
tion units—several adders, say, and a couple of
multipliers—and then modify the control path to
keep all the units busy as much as possible. Thus
the processor might be perforating an addition, a
multiplication and a numeric comparison all at the

Figure 1. Hard-wired two-into-four decoder controls four function units.

Figure 2. Basic structure of a microprogrammed control unit.

1995 March-April 127



same time. To achieve this kind of parallelism, the
control unit must be able to analyze a sequence of
instructions and decide when some of them can
be issued simultaneously. For example, if the oper
ation c = a + b is followed by d = b x 2, there is no
obvious reason the second instruction cannot be
started at the same time as the first. But conflicts of
ten block parallel execution. If the second opera
tion reads d = c x 2, it cannot be executed until the
first instruction completes, because only men will
the value of c be known. In a superscalar chip the
control path must detect such dependencies and
schedule the instructions accordingly.

Several superscalar processors are now in suc
cessful production. The current state of the art is
the Alpha 21164 chip from Digital Equipment Cor
poration, which can execute four arithmetic in
structions at once. It runs at a clock rate of 300
megahertz and is said to have a peak throughput
of more than a billion instructions per second.

The potential of superscalar techniques has sure
ly not been exhausted, and yet it appears difficult to
achieve much more man fourfold parallelism. For
one tiling, the complexity of the instruction-sched
uling circuits increases as the square of the number
of instructions being scheduled, so that the control
path would soon become unwieldy. There may also
be a more fundamental limit. Scheduling algo
rithms view a program as a set of "basic blocks,"
which are sequences of instructions that are always
executed together; the program cannot branch into
a basic block except at the top and it cannot branch
out except at the bottom. Superscalar processors
look mainly at instructions within the same basic
block as candidates for concurrent execution. But
the potential parallelism in basic blocks is severely
limited. A typical basic block is only about a dozen
instructions long, and it cannot be sped up by more
than a factor of two or three.

Vertical and Horizontal Computing
The VLIW architecture promises to break through
the basic-block bottleneck. If the RISC machine is a
lobotomized vertical-microcode computer, then
the VLIW machine is a decapitated horizontal-

instruction j
decoding

1
instruction scheduling

^ ' X -
|010001101001110010001110011000100101010010100101oT

function
unit

function
unit

function
unit

function
unit

Figure 3. Superscalar processor keeps multiple function units busy.

I
11110001010001011000111001100010110101011010011100

I
function

unit
function

unit
function

unit
function

unit

Figure 4. The bits of a VLIW control the function units directly.

128 American Scientist, Volume 83

microcode computer. Even the rudimentary in
struction-decoding mechanism of a typical RISC
has been removed. A VLIW instruction is a long
string of bits—from a few hundred bits to a thou
sand or more—that directly controls an entire
complement of function units. Each bit turns on or
off a particular element of the data path. Parallel
execution is arranged simply by setting the in
struction bits that activate several function units at
the same time. The hardware does no instruction
scheduling; all decisions about when and where
instructions are executed must be made when the
program is compiled.

The enabling technology for VLIW computers
is not an innovation in hardware engineering but
rather a set of compiler techniques. The compiler
must decide which operations can be dispatched
to the various function units at any given time and
pack them together into one long instruction
word. To find worthwhile amounts of parallelism,
it must look beyond the boundaries of basic blocks
for instructions to schedule together. This is a del
icate task: When the scope of the scheduling algo
rithm extends beyond branch points and merge
points in the program text, the compiler cannot
even know which instructions will be executed
and which will be bypassed on any given pass
through the program.

An algorithm for VLIW compilation, called
trace scheduling, was devised in about 1980 by
Joseph A. Fisher, who was then at Yale University.
The idea is to select paths through the program
that could conceivably be followed during a spe
cific run, and ideally to start with the likeliest
paths. Each such path, called a program trace, can
include multiple basic blocks, with branches and
merges, but it cannot have any loops (branches
backward to an earlier point on the same trace).
The scheduler deals with the entire trace as if it
were a single basic block, moving operations
around as necessary to pack them into the mini
mum number of long instruction words. The only
constraints on the scheduling are data dependen
cies (where one instruction needs the result of an
other) and a requirement that branch instructions
not be executed out of order.

Moving instructions between basic blocks can
alter the meaning of a program. For example, sup
pose the addition c = c +1 is performed just above
a branch instruction, so that the incremented value
of c is available in either arm of the branch. If the
scheduling algorithm moves the addition opera
tion below the branch, c will have the wrong value
in the arm of the branch not included in the trace.
To avoid this error the c = c + 1 operation must be
duplicated and inserted in both arms of the
branch. Fisher formulated a complete set of rules
for making such adjustments, which he termed
"bookkeeping."

Another compilation strategy suitable for VLIW
computers emerged from the work of Wen-Mei
Hwu and his colleagues at the University of Illi
nois at Urbana-Champaign. Hwu's method also
gathers basic blocks into larger units, in this case



called superblocks. But then the program code is
rearranged and duplicated as necessary to elimi
nate merge points, where another path of execu
tion enters the interior of the superblock. The ab
sence of merge points allows a more aggressive
approach to scheduling the instructions.

A technique called predicated execution, which
can eliminate many branch instructions, has
proved a valuable adjunct to VLIW compiler al
gorithms, hi a conventional computer the state
ment ifs # 0 then s = Vs would be represented by a
conditional branch that bypasses the division in
struction if the inequality proves false. With pred
icated execution, the comparison stores the value
false in a predicate register associated with the di
vision instruction; both instructions can be execut
ed at once, but the result of the division is discard
ed if its predicate is false.

In 1984 Fisher and several colleagues founded a
company to manufacture a VLIW computer called
the Multiflow Trace. Their largest model had 28
function units and an instruction word of 1,024
bits. At about the same time B. Ramakrishna Rau,
another pioneer of VLIW studies, formed a com
pany called Cydrome that built a VLIW mini-
supercomputer. Neither Multiflow nor Cydrome
proved commercially successful, but their failure
had more to do with the declining market for
large-scale computer systems than with VLIW ar
chitecture. Interest in VLIW systems is now reviv
ing, but in a different context: as a candidate for the
next evolutionary development in microprocessors
for scientific workstations and perhaps for general-
purpose personal computers. Both Fisher and Rau
are now in the research division of Hewlett-
Packard, a leading maker of workstations.

What Comes Next
The next generation of high-performance comput
er systems will surely have to rely on some form
of parallelism. In comparing the superscalar and
the VLIW approaches to instruction-level paral
lelism, there are advantages and disadvantages on
both sides. Scheduling at rim time, as in the su
perscalar processor, offers the advantage that
eveiything is known about the path of execution
by the time that scheduling decisions have to be
made. On the other hand, the analysis of depen
dencies and the search for instructions that can be
executed concurrently must be carried out in haste
as the program is running. If the scheduling algo
rithm became too elaborate, it would consume
more time than parallel execution would save.

The VLIW scheduler has die advantage that it
runs only once, before execution begins, and hence
it can dedicate almost unlimited computational re
sources to the task. The drawback is that certain
details of the program's structure cannot be de
duced at compile time. For example, two variables
named x and y might appear to be distinct, and
yet they could be "aliases" referring to the same
memory location; if the compiler cannot prove that
x and i/ are independent, it cannot schedule con
current operations on them. This problem does not

Figure 5. Program traces span multiple basic blocks.
arise in run-time scheduling, since by then the
memory addresses themselves are available. Even
with such limitations, however, a VLIW compiler
should be able to find much more parallelism than
a superscalar run-time scheduler.

The prospect of widespread adoption of VLIW
technology raises a number of other interesting
questions. One issue that is often mentioned is
"code bloat." hi principle, instructions 1,024 bits
wide might take up no more space than instruc
tions 32 bits wide, because there would be propor
tionately fewer of the wide instructions. In practice,
even after adopting various tricks for code com
pression, VLIW programs would probably be larg
er than equivalent RISC programs.

Most of the compiling algorithms for VLIW ma
chines have been developed with scientific com
puting in mind; they are tuned for numerically in
tensive applications such as Fourier transforms
and matrix inversions, where programs are often
constructed out of simple loops. A general-pur
pose computer must also handle other kinds of
code efficiently. Indeed, it must be able switch in
stantly from one kind of task to another. It is not
yet clear how well VLIW systems will adapt to
this environment.

Perhaps the most worrisome problem connected
with VLIW machines is the difficulty of providing
a growth path and upward compatibility. Existing
processor chips come in families that differ in per
formance but share the same instruction set. The
best-known example is the Intel family: Many pro
grams compiled 15 years ago for the Intel 8086 still
run on the current 486 and Pentium designs. The
same concept is very attractive for VLIW chips,
since more powerful members of a family could
be created simply by adding more function units,
or by making the units faster. It looks very difficult,
however, to achieve compatibility across such a
family without recompiling programs; the VLIW

1995 March-April 129



instruction format is tied too closely to the details
of the hardware configuration.

Work is under way on all of these problems. For
example, the space-efficient encoding of VLIW
code is being investigated by a collaboration of
groups headed by Rau at Hewlett-Packard, Hwu
at Illinois and Thomas M. Conte at the University
of South Carolina. Conte and others are also look
ing at the question of code compatibility. In this
connection Rau points out that if family compati
bility can be achieved in highly parallel super
scalar processors, then the same techniques
should work for VLIW machines as well. There
are even rumors that Intel and Hewlett-Packard
plan a VLIW design that will somehow execute
code compiled for the '86 series of processors.

Spineless Computing
I find it fascinating and slightly disconcerting that
the way to make computers run faster is to extir
pate their higher brain functions. The trend can be
carried at least one step further. A concept called
transport-triggered arcliitecture (TTA), proposed by
Henk Corporaal of the University of Delft, breaks
down computations into even smaller pieces than
RISC or VLIW operations. Addition in an ordinary
computer appears to be an atomic operation but is

actually a mulristep procedure. First the operands
are transferred to the two inputs of an adder, then
the addition itself is done, and finally the result is
moved to some destination register. A TTA proces
sor would have no "add" instruction but would
give the compiler control of these individual ac
tions. To continue the gruesome metaphor of lobot-
omized and decapitated processors, the TTA ma
chine lacks even the spinal-cord neurons that
handle primitive reflexes; the compiler must tell
each muscle fiber when to twitch.

Who would have guessed that this is an image
of the ultimate computer?

Bibliography
Colwell, Robert P., Robert P. Nix, John J. O'Donnell, David B.

Papvvorth and Paul K. Rodman. 1988. A VLIW architec
ture for a trace scheduling compiler. IEEE Transactions on
Computers 37:967-979.

Conte, Thomas M. 1995. Superscalar and VLIW processors.
To appear in: A. Y. Zomaya (ed.): Handbook of Parallel and
Distributed Computing. New York: McGraw-Hill.

Ellis, John R. 1985. Bulldog: A Compiler for VLIW Architec
tures. Cambridge: MIT Press.

Fisher, Joseph A., and B. Ramakrishna Rau (eds). 1993. Spe
cial issue on instruction-level parallelism. The journal of
Supeicomputing 7.

Pountain, Dick. 1995. Transport-triggered architectures. Byte
20(2): 151-152.

From the makers of LabVIEW

Interactive Math for Macintosh and Power Macintosh

Interactively analyze and document in the HiQ environment - much more than a
command-line interface.

Solve Math Problems Interactively
• Data Fitting
• Data Visualization
• Eigenvalue
• Expression Evaluation
• Linear Algebra

Call today for Your
FREE HiQ Demo
(800) 433-3488
(Includes Interactive Data Fitter)
E-mail address: info@natinst.com

Numerical Integration
Nonlinear Systems

1 Optimization
< Ordinary Differential
Equations

• Probability and Statistics
• Root Solving
> Signal Processing
and much more ...

Pct national▶instruments
The Software is the Instrument'
(5504 Bridge Poini Parkway
Austin, TX 78730-5039 li.SA
Tel: (512)794-0100
Fax:(512)794-8411

) Copyright 1995 National Inun i Cmponnon. All light* reserved Product and tompjny RUM li'tcd xtt tuJciiuik*» that ropevm

SCIENTIST
£ t h e 7xperimental
package from MicroMath
SCIENTIST for Windows was designed
from the ground tip to fit model equations
to experimental data. The culmination of
over eight years ol software development,
SCIENTIST integrates and extends four
previous MicroMath products into one
powerful package devoted to simulation
and data fitting. Fit simple equations, or
fit combinations or systems of nonlinear
algebraic equations, differential equationsand Laplace transforms—or fit a variety
of interpolating or least squares splines
and polynomials. Also includes 3D line
and surface plotting, and a built-in work
sheet with dimensional analysis, error
propagation, unit conversion/factoring and
expression evaluation using IEEE specs.

Requires Windows. Call toll-free for more
information or to place order, or Tax for
quickest service. $395/\1sa/MC accepted.

60 day money hack guarantee.

MicroMath.
1-800-942-MATH

FAX 1-801-943-0299

Circle 41 on Reader Service Card Circle 16 on Reader Service Card


