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The Magic Words Are
Squeamish Ossifrage

Brian Hayes

. bu are given two integers, a and b, and' asked to compute their product, ab = c. An

algorithm for this task is taught in the early
primary grades. For those of us who were day
dreaming in class that day, a computer implemen
tation of the algorithm yields an answer in micro
seconds, even if a and b are rather large numbers,
say 60 or 70 decimal digits. Now suppose you are
given the number c and asked to discover the two
factors a and b, which you may assume are prime
numbers (that is, they have no factors of their
own, apart from 1 and themselves). This is a much
harder assignment. If a and b are in the 60-digit
range, so that c has more than 120 digits, finding
the factors is definitely not elementary-school
homework.

The dramatic asymmetry between multiplica
tion and factorization is the basis of an important
cryptographic system: the RSA public-key cryp-
tosystem, named for the initials of its inventors,
Ronald L. Rivest of the Massachusetts Institute of
Technology, Adi Shamir of the Weizmann Insti
tute in Israel and Leonard M. Adleman of the Uni
versity of Southern California. When a message is
encoded in the RSA system, the legitimate recipi
ent, who knows the decryption key, can recover
the original text through a computational process
roughly as easy as multiplying several large num
bers. For an eavesdropper trying to break the
code, however, decrypting the message is thought
to be as hard as factoring a very large composite
integer into its two large prime factors.

In 1977 the RSA system was brought to public
attention in Martin Gardner's "Mathematical
Games" column in Scientific American. The column
included a short message encoded with a 129-dig-
it key, and offered a prize of $100 to anyone who
could decrypt the message, presumably by factor
ing the published number. The challenge stood for
17 years. A campaign to factor the number, which
has come to be known as RSA-129, was launched
last August, and it came to a successful conclu
sion after eight months of effort by more than 600
contributors (and their computers). The factors
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were announced on April 26, along with the de
coded message: "The magic words are squeamish
ossifrage." (An ossifrage is a lammergeier, a
"bone-breaking" vulture, which seems to suggest
the character of the factoring problem, but Rivest
says the secret text was chosen at random.)

The factoring of RSA-129 is interesting for at
least three reasons. First, it calls attention to a sub
stantial improvement in the art and the technology
of factoring, and to progress in computational
number theory more generally. Second, because
the factoring was done by an ad hoc network of
widely dispersed volunteers, it offers lessons on
the logistics of organizing large-scale cooperative
computing projects. Third, the success of the fac
toring effort emphasizes the strong connections
that have grown up between cryptology and areas
of discrete mathematics and theoretical computer
science. It is well known that modern cryptology
rests on a foundation of ideas from these fields, but
it is not so widely appreciated that cryptological
problems have stimulated deep theoretical work.

The Trials of Division
The most direct method of factoring is another
grammar-school algorithm: division. Given a
number n to be factored, you first try dividing it
by 2, which is the smallest of all primes. If the
division yields a remainder of 0—or in other
words if 2 divides n exactly—then you have
found a factor. Actually you have found a pair of
factors: a small one (2) and a large co-factor (n/2).
If 2 doesn't work, try 3, then 5, then 7, then 11,
then each of the larger prime numbers in
sequence. If you reach a prime greater than the
square root of n without finding a factor, you
have proved that n is prime.

Trial division is a brute-force algorithm—a de
scription that always suggests a hint of scorn.
(Clever people shouldn't need brute force.) Factor
ing a 100-digit number by trial division could re
quire roughly 1050 operations, which could not
possibly be completed even by an ad hoc network
of all the computers on earth. Nevertheless, trial
division should not be dismissed as totally useless.
As a matter of fact, it is the best known factoring al
gorithm for almost all integers! To be more specific,
it is the best method of finding a factor when n
happens to have a small factor, which is true of
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most tt's. After all, half of all integers are divisible
by 2, a third of them are divisible by 3, a fifth by 5,
and so on. If 100-digit numbers are selected at ran
dom, more than 95 percent will have at least one
factor smaller than a million. On the other hand,
numbers used as keys in RSA cryptography are
not selected at random; they are known to have
only very large factors, so that for these selected
integers trial division is certain to fail.

One response to this problem is simply to work
from the "other end" of the number, mstead of
starting with 2 and progressing toward the square
root of n, start with the largest integer less than
the square root and work downward toward 2. If
a 100-digit n is created by multiplying two 50-dig-
it primes, then the prime factors must be compar
atively close to the square root of n. By starting
with the square root, it seems one must quickly
discover the factors. But there is a fallacy in this
reasoning. Knowing that two numbers are both
50 digits long offers little help in finding them.
Among all integers with 50 or fewer decimal dig
its, 90 percent have exactly 50 digits.

Pierre de Fennat, the great 17th-century num
ber theorist, suggested another factoring strategy
that begins with the square root of n. Fermat ob
served that if n could be expressed as the differ
ence between two squares, the factorization would
be known directly. If n is equal to x2 - y2, then n is
also equal to (x + y)(x - y), and so (x +y) and (x - y)
are factors of n. For example, the composite num
ber 187 can be written as the difference 142-32,
or 196-9, and the numbers 14-3 = 11 and
14 + 3 = 17 are indeed factors of 187.

To turn Fermat's idea into a factoring algorithm,
all that is needed is a procedure for finding suit
able values of x and y. The straightforward solu
tion begins by setting x equal to the smallest inte
ger greater than or equal to the square root of n
and calculating x2 - n. If the result is a perfect
square, a pair of factors has been found; otherwise,
increase x by 1 and try again. This tactic works
well if n happens to have two nearly equal fac
tors, but in general the number of operations
needed is no better than it is with trial division.

The trouble with Fermat's algorithm is that for
each pair of factors in n there is only one pair of
positive integers satisfying x2 -y2 = n; finding those
integers is not necessarily any easier than finding
the factors directly. A way around this limitation
derives from the work of the French mathemati
cians Adrien-Marie Legendre (in the 1820s) and
Maurice Kraitchik (a century later). The idea is to
search for values of x and y that satisfy not a qua-
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Figure 1. Prime factors of the 129-digit number known as RSA-129.

dratic equation but a quadratic congruence of the
form .V2=y2 modLilo n. Thus one looks for values of
x and i/ whose squares leave the same remainder
when they are divided by n. When this relation
holds, x + y and n must have a factor in common
(and the co-factor is common to x-y and ;/); the
factor is found by calculating the greatest common
divisor of x + y and n, for which there is an effi
cient algorithm. In some cases the factor found is a
trivial one—either 1 or n itself—but if n is not
prime, there is at least a 50-50 chance of finding a
nontrivial factor. What is more, for a large compos
ite n there are many x,y pairs that satisfy die con
gruence, so that they are potentially easier to find
than the unique solutions to the equation x2-y2 =n.

Consider again the factoring of n = 187. The val
ues x = 14 and y = 3 discovered through Fermat's
method satisfy the congruence formula, since
142 = 196 and 32 = 9 are both congruent to 9 mod
ulo 187. But the vahies x = 25 and y = 8 also work
in the congruence, since 625 and 64 both leave a
remainder of 64 when divided by 187. The sum
25 + 8 = 33 has the factor 11 in common with 187;
the difference 25 - 8 = 17 gives the co-factor. The
same result could be obtained with x = 72 and
y = 38, with .v = 535 and y = 246 and with innu
merable other pairs. Stumbling onto any of these
solutions is enough to factor the number. Most of
the hot new factoring algorithms rely in one way
or another on a search for quadratic congruences.

Sieving for Smooth Numbers
The first of the modern factoring algorithms was
a continued-fraction method, devised in the
1930s by D. H. Lehmer and R. E. Powers but not
put into practice until 1970 by Michael A.
Morrison and John Brillhart. In 1974 the British
mathematician John M. Pollard introduced the
p-\ algorithm, which produces a quick factor
ization of;/ = pq if either p -1 or q -1 happens to
be an easily factored number; this works surpris
ingly often for numbers of 20 or 30 digits. Pollard
also created a second algorithm, the p method,
which works over a similar range. In 1986
Hendrik W. Lenstra, Jr., of the University of
California at Berkeley devised a quite different
factoring method based on elliptic curves; it
works well for finding factors up to about 40 dec
imal digits, regardless of the size of n. When the
smallest factor is still larger, the elliptic-curve
method has been surpassed by the quadratic
sieve, an algorithm published in 1981 by Carl
Pomerance of the University of Georgia; the qua
dratic sieve will be described in greater detail
below. In the meantime, yet another algorithm of
Pollard's, the number-field sieve, appears ready
to supplant the quadratic sieve in dealing with
still larger numbers.

Most of these algorithms draw on a common
body of underlying principles and techniques. As
noted above, quadratic congruences are central to
several of them. Here are some other shared ideas:

First, all of the recent algorithms have an ele-
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ment of randomness in their operation. Trial divi
sion is a fully deterministic procedure: Nothing is
left to chance, and if a trial-division program ter
minates without finding a factor, you can be sure
that no factor exists. The newer algorithms can
not offer such a guarantee.

Second, some of the algorithms adopt a strategy
that seems perverse and evasive: Given a number
that is too hard to factor, they set about searching
for other numbers that are especially easy to factor,
namely numbers composed entirely of quite small
primes. Numbers of this kind are said to be
"smooth," because there are no wide gaps or
jagged peaks in their list of factors. The hard part,
of course, is finding a way to apply information
gained from the smooth numbers to the single
nonsmooth number whose factors are needed.

Third, several of the algorithms make use of
"sieves," which bring a kind of mass-production
technology to number theory. The most famous
number sieve is mat of Eratosthenes, an Alexan
drian who lived circa 250 b.c.e. To strain some
numbers through Eratosthenes' sieve, start by writ
ing down the integers from 2 to some limit. Circle
the 2 and cross off every second number after it,
then circle the 3 and cross off every third number;
at this point 4 has already been crossed off, so circle
the 5 and cross off every fifth number. Continue in
this way until there are no numbers left unmarked,
at which point the circled numbers are the primes.
In factoring, a sieve is often used in reverse, so that
the numbers of interest are not the primes (which
never get crossed off) but the smooth numbers
(which are crossed off many times).

The algorithm used to factor RSA-129 was a ver
sion of the quadratic sieve. It incorporates all of the
features mentioned above: a focus on quadratic
congruences, randomness, a search for smooth
numbers and a sieve. I shall describe it in a simpli
fied form, but even without all the latest embell
ishments, it is an admirably ingenious algorithm.

The Quadratic Sieve
To factor n with a quadratic sieve, first choose
some integers r not too far from the square root
of n, then for each r calculate Q = r2 mod n. Now
try to factor each of the Q's, using only the factors
in a finite set of small primes called the factor
base. Since the primes in the factor base are
small, the factoring will be easy. (The best way to
do it will be described below.) A factored value
of Q can be represented as a list of the primes in

J8'7jB'9 10 11 12 13 14 15 10 17 18 19 20 21 22 23 24 25 26
&7 00 10" 11 # 13 14 15 1017 # 19 20 3t 22 23 24- 25 26
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#7 0010 11 # 13 1ft IS 10 17 10 19 20 7ft 22 23 7ft 25 26
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Figure 3. "Smooth" numbers are those with many small factors.

the factor base with their accompanying expo
nents, which indicate how many times each fac
tor appears in Q. For example, if the factor base
consists of the primes 2, 3, 5 and 7, the number
504 can be represented as 23 x 32 x 5° x 71.

As you are accumulating factored Q values, you
might keep an eye out for any list of factors in
which all the exponents are even; if such a number
should turn up, it is a perfect square and hence a
solution to the congruence x2 = y2 mod n. An ex
ample is 400, with the factorization 24 x 3° x 52 x 7°,
which is the square of 20. Finding a square Q im
mediately leads to a factor of n. Unfortunately,
when n is large, the odds of finding a factor in this
way are minuscule.

What if you don't get lucky and find a square
Q? Suppose you have two Q's that would be per
fect squares except that one includes 31 as a factor
and the other includes 33? If you multiply these Q
values—and thus add the exponents of their
prime factors—the product includes 34 among its
factors, and all the other exponents also remain
even. What is more, if you also multiply the corre
sponding r's, the quadratic congruence will still
be satisfied. In other words, if you cannot find a
square Q, you can create one out of two Q's that
are "almost" square. Indeed, you can combine not
just two Q's but any number of them to convert
odd-order factors into even-order ones. If you
have enough Q's to work with, there is sure to be a
combination of them that is a perfect square; fur
thermore, there is an efficient procedure for find
ing mat combination. How many Q's are enough?
You need at least as many Q's as there are primes
in the factor base.

The procedure for constructing a square combi
nation of Q's is an exercise in linear algebra. As
semble all the data into a matrix with one column
for each prime and one row for each Q; a matrix
element at column i and row / is the exponent to
which the /th prime is raised in Q* In combining
Q's to form a perfect square, all that matters is
whether an exponent is odd or even, and so each
exponent can be represented by a single bit of in
formation—0 for even, 1 for odd. Two rows of the
matrix are combined by adding them modulo 2.
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The selection of which rows to add can be made
systematically through the technique called
Gaussian elimination, which eventually generates
a row of all O's. If you keep track of the operations
that lead to this result, you can then go back to
the actual Q and r values that the matrix rows rep
resent and carry out the corresponding multipli
cations. The resulting numbers produce a factor.

How are all those Q's and fs found in the first
place? That's where the sieve comes in. The naive
approach would be to select /s either sequentially
or randomly, calculate Q s /- mod ;/, and try fac
toring Q by trial division. If Q is smooth, the fac
toring will go quickly; if not, you can simply aban
don the attempt and skip to the next r. A sieve
improves on this method by testing thousands of
Q's at once. When a range of Q values is set Lip in
an appropriate arithmetic progression, divisibility
by the primes in the factor base is determined
merely by counting off and crossing oLit, as it is in
the sieve of Eratosthenes. In practice, rather than
simply counting how many primes divide a given
Q, the algorithm sums the logarithms of the suc
cessful divisors, thereby giving greater weight to
larger factors. Each Q for which this sum exceeds a
threshold is likely to be smooth, and so it can be
factored quickly by trial division.

Factoring by E-mail
Factoring is one of the most computationally
demanding tasks in mathematics, and yet it has
traditionally been done on a shoestring budget.
Factorers have scavenged idle time on comput
ers; they have offered to test and exercise the
hardware of new machines; they have rescued
discarded computers and kept them running in
the basement. There is also a tradition of home-
brewing, seen most notably in the marvelous
mechanical number sieves of D. H. Lehmer, built
out of punched paper tapes or bicycle chains.

In recent years the most popular approach to
low-budget factoring has been exploiting the idle
nights and weekends of workstations that are left
on 24 hours a day but often have nothing better to
do than run a screen-saver program. The pioneer
of this technique has been Robert Silverman of the
MITRE Corporation, who has factored more than
a thousand large numbers with a few dozen
workstations on a local-area network. Arjen K.
Lenstra of Bellcore and Mark S. Manasse of the
Digital Equipment Corporation have cast a wider
net, writing software that allows a factoring job to
be distributed among distant workstations whose
only connection is electronic mail.

The factoring of RSA-129 was the largest yet of
the distributed factoring projects; indeed, it is
probably one of the largest single computations
ever undertaken. The four principal organizers
were Arjen Lenstra, Paul Leyland of the Universi
ty of Oxford, Derek Atkins of MIT and Michael
Graff of Iowa State University. They employed the
Lenstra-Manasse software, tuned for the 129-digit
number and adapted to run on a wider variety of

computers. The call for volunteers last August
elicited help from 600 people in 24 countries,
many of whom were able to contribute time on
multiple machines.

The algorithm chosen for the project is known as
the multiple-polynomial quadratic sieve, in which
the single congruence Q = r2 mod // is replaced by a
large set of polynomial relations. The multiple-
polynomial variant is particularly well adapted to
distributed computing, since each machine can
work on its own polynomial. Another enhance
ment allows the program to accept Q values that
do not quite factor fully within the factor base but
have either one or two larger prime factors. Such
single and double "partials" can be combined in
various ways to yield full congruences.

All through the fall and winter, congruences
poured into a central collecting site at MIT. The
factor base consisted of 524,338 primes, and so at
least as many full congruences were needed to
guarantee a factorization. By the end of March the
threshold had been reached. The far-flung sievers
had returned more than 100,000 full congruences
and 8 million partials; the latter were combined to
create the equivalent of another 425,000 fulls.

This was the end of the networked phase of the
project, but there was still a substantial computa
tion ahead: The analysis of a matrix with 524,338
columns and 569,466 rows. The Gaussian elimi
nation took 45 hours on a MasPar computer with
16,384 processors. The first three factorizations
found were trivial ones, but the fourth solution
yielded the factors shown in Figure 1.

Ignorance and Security
The factoring of RSA-129 was not an isolated
landmark but rather a milestone along a route
where mathematicians and computer scientists
have been making steady progress. In 1990 RSA
Data Security—the company formed by Rivest,
Shamir and Adleman—published a list of chal
lenge numbers designated RSA-100, RSA-110,
RSA-120 and so forth up to RSA-500 (the names
indicate the length of the number in decimal dig-

5 0 1 0 0 1 5 0
number of decimal diaits in number to be factored

200

Figure 4. Approximate running time of some factoring algorithms.
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its). The first three of these numbers have now
been factored, all by quadratic-sieve methods
and all by Arjen Lenstra either alone or in collab
oration with others. Now with RSA-129 factored,
RSA-130 is obviously in jeopardy.

Do these accomplishments put the security of
the RSA cryptosystem in doubt? Both the cryptol-
ogists and the number theorists think not. RSA
Data Security recommends a minimum key size of
about 150 digits, which is still beyond the practical
range of the programs employed in the RSA-129
effort. A rule of thumb suggests that adding 10
decimal digits to the length of a number makes it
from five to 10 times as hard to factor. By this
crude measure, factoring RSA-150 by the meth
ods and machines applied to RSA-129 would take
more than a decade, though less than a century.

Of course methods and machines will continue
to improve, but in the contest between key-maker
and key-breaker, the advantage clearly lies with
the maker. It is easier to add another 10 digits to
the key than it is to make a factoring algorithm 10
times faster. Keys as long as 300 digits are in com
mon use; factoring numbers this large is beyond
any forseeable extrapolation of present techniques.

On the other hand, there is reason for caution in
the long run. The true difficulty of factoring re
mains unknown and somewhat controversial. Al
though the best algorithms devised so far do not
threaten the RSA system, some totally new and
astonishingly clever method might be invented to-

Save your copies of

morrow. Or it might have been invented yesterday
by someone working for a publicity-shy govern
ment agency in the suburbs of Washington, D.C.
No law of nature or theorem of mathematics for
bids efficient factoring; perhaps it is as easy as
multiplication if only you know the trick. Thus
the security of RSA ciphers (and many others) de
pends more on ignorance than on knowledge—it
depends on what we don't know how to do,
rather than on what we know cannot be done.
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